EFFECT OF HEAT INPUT AND FILLER METAL ON WELDING OF SUPERAUSTENITIC AND SUPERDUPLEX STAINLESS STEELS

by

Maiada Sayed Mahmoud Mahmoud M.Sc. in Metallurgical Engineering

A thesis submitted to the
Faculty of Engineering at Cairo University
in partial Fulfillment of the
Requirements for the Degree of
Doctor Of Philosophy
in
METALLURGICAL ENGINEERING

FACULTY OF ENGINEERING, CAIRO UNIVERSITY, GIZA, EGYPT

2014

EFFECT OF HEAT INPUT AND FILLER METAL ON WELDING OF SUPERAUSTENITIC AND SUPERDUPLEX STAINLESS STEELS

by

Maiada Sayed Mahmoud Mahmoud

M.Sc. in Metallurgical Engineering

A thesis submitted to the **Faculty of Engineering at Cairo University** in partial Fulfillment of the **Requirements for the Degree of Doctor Of Philosophy** in METALLURGICAL ENGINEERING

Under the supervision of

Prof. Dr. Mohamed R. El Koussy Prof. Dr. Nahed A. Abdel-Raheem

Professor of Metallurgy Metallurgy Department

Professor of Metallurgy Metallurgy Department Faculty of Engineering, Cairo University Faculty of Engineering, Cairo University

> FACULTY OF ENGINEERING, CAIRO UNIVERSITY, GIZA, EGYPT 2014

EFFECT OF HEAT INPUT AND FILLER METAL ON WELDING OF SUPERAUSTENITIC AND SUPERDUPLEX STAINLESS STEELS

by

Maiada Sayed Mahmoud Mahmoud

M.Sc. in Metallurgical Engineering

A thesis submitted to the
Faculty of Engineering at Cairo University
in partial Fulfillment of the
Requirements for the Degree of
Doctor Of Philosophy

in METALLURGICAL ENGINEERING

Approved by the

Examining Committee

Prof. Dr. Samier A. Abraheem, External Examiner

Suez Canal University

Prof. Dr Ahmed M. El Sheikh, Internal Examiner

Faculty of Engineering-Cairo University

Prof. Dr. Mohamed R. El Koussy, Thesis Main Advisor

Prof. Dr. Nahed A. Abdel-Raheem, Thesis Main Advisor

FACULTY OF ENGINEERING, CAIRO UNIVERSITY, GIZA, EGYPT 2014 Engineer: Maiada Sayed Mahmoud Mahmoud Abdel-Rahman

Date of Birth: 16 / 11 / 1984

Nationality: Egyptian

E-mail: madye_mahmoud@yahoo.com

Phone.: 01005292904

Address: 94 Shubra Street (El Dwaran)

Registration Date: 1/3 /2010 Awarding Date: / /

Degree : Doctor Philosphy Degree

Department: Mining, Petroleum, and Metallurgy

Supervisors: Prof. Dr. Mohamed R. El Koussy

Prof. Dr. Nahed A. Abdel-Raheem

Examiners: Prof. Dr. Samier A. Abraheem

Prof. Dr. Ahmed M. El-sheikh

Prof. Dr. Mohamed R. El Koussy Prof. Dr. Nahed A. Abdel-Raheem

Title of Thesis: Effect of heat input and filler metal on welding superaustenitic and super duplex stainless steels

Key Words Superaustenitic, Duplex, Super duplex, Stainless Steels, Unmixed Zone, Secondary austenite, Microstructure, Toughness, Hardness

Summary:

This work focused on comparing the effect of welding heat input within the range from 1 to 5 kJ/mm and filler metal on the Mo segregation within the microstructure due to welding of dissimilar weld joints of superaustenitic stainless steel/Incoloy 28 and duplex stainless steel/super duplex stainless steel and its effect on the mechanical and corrosion properties of the weld joints. The mechanical properties and pitting corrosion resistance were found very sensitive to formation of unmixed zone at fusion line and secondary phases within weld metal and HAZ such as NbC and secondary austenite which appeared in the microstructure after welding.

To my Family

ACKNOWLEDMENTS

I would like to express my sincere thanks to the supervisors due to their encouragements, guidance, fruitful discussions, and revision of the thesis. Also, I would like to thanks all family members of Department of metallurgy in Faculty of Engineering at Cairo University. I like to show gratitude to all people who helped in this work, especially members of the mechanical testing and welding laboratory. Many thanks to my husband and my parents for their help and support.

TABLE OF CONTENTS

		Pag
LIST (OF TABLES	vi
LIST (OF FIGURES	vii
ACKN	OWLEDGEMENTS	XV
ABSTI	RACT	xvi
Chap	ter 1: Introduction and Literature Survey	1
1.1	Introduction	2
1.2	Super austenitic stainless steel	5
1.2.1	Development of super austenitic stainless steel (SASS)	5
1.2.2	Physical Metallurgy	6
1.2.3	Mechanical Properties	7
1.2.4	Corrosion Properties	9
1.3	Incoloy 28	11
1.3.1	Physical metallurgy	12
1.3.2	Mechanical Properties	12
1.3.3	Corrosion Properties	13
1.4	Welding Metallurgy of SASS and Incoloy 28	14
1.5	Mechanical Properties of SASS and Incoloy 28 Weldments	15
1.6	Duplex stainless Steels	17
1.6.1	Classification of Duplex Stainless Steels	18
1.6.2	Physical Metallurgy	19
1.6.3	Precipitation in Duplex Stainless Steel	21
1.6.4	Mechanical Properties	23
1.6.4.1	Tensile properties	23
1.6.4.2	Impact properties	25
1.6.4.3	Fatigue Properties	26
1.6.5	Corrosion Properties	27
1.6.5.1	General Corrosion	27
1.6.5.2	Pitting and Crevice Corrosion	28
1.6.5.3	Stress-Corrosion Cracking	28

1.6.5.4	Intergranular Corrosion	30
1.6.5.5	Erosion-Corrosion	31
1.6.6	Welding Metallurgy of DSS	31
1.6.7	Mechanical Properties of DSS Weldments	32
1.6.8	Welding Practice of DSS	33
1.7	Super-Duplex Stainless Steel	33
1.7.1	Microstructural Evolution and Metallurgical Properties	34
1.7.2	Precipitation in SDSS	34
1.7.2.1	Secondary Austenite	35
1.7.2.2	Sigma phase	35
1.7.2.3	Chi phase	35
1.7.2.4	Chromium nitrides	35
1.7.2.5	Carbides	36
1.7.2.6	R-phase	36
1.7.2.7	475°C Embrittlement	36
1.7.3	Mechanical Properties	36
1.7.3.1	Tensile Properties	37
1.7.3.2	Impact Properties	37
1.7.3.3	Fatigue Properties	37
1.7.4	Corrosion Properties	38
1.7.4.1	Localized Corrosion	38
1.7.4.2	Stress Corrosion	39
1.7.5	Welding Metallurgy of SDSS	39
1.7.6	Welding Processes	40
1.7.7	Mechanical and Corrosion Properties of Weldments	40
1.8	Problems Associated with Welding	41
1.8.1	Solidification cracking	41
1.8.2	Weld Decay	43
1.8.3	Hot Cracking	44
1.8.4	Unmixed Zone	45
1.8.5	Stress Corrosion Cracking	47
1.8.6	Pitting and Crevice Corrosion	47
187	Hydrogen-Induced Cracking	48

1.9	Welding Parameters	48
1.9.1	Heat Input	48
1.9.2	Filler Metal	51
Chap	Chapter 2: Experimental Procedures	
2.1	Objectives	
2.2	Chemical composition of investigated steels	54
2.3	Heat Treatment	55
2.3.1	Heat treatment prior to welding	55
2.3.2	Post weld heat treatment	55
2.4	Welding Condition	56
2.4.1	Similar Welds	56
2.4.2	Dissimilar Welds	57
2.5	Tensile Test	58
2.6	Charpy V Notch Impact Test	59
2.7	Hardness Test	60
2.8	Microstructure Analysis	61
2.9	Corrosion Test	61
Chapter 3: Results and Discussion		
3.1	Effect of heat input and filler metal on the microstructure	61
	of bead-on-plate (similar) weld joints	64
3.2	Effect of heat input and filler metal on the microstructure	75
	of dissimilar weld joints	75
3.2.1	SASS to Incoloy 28 dissimilar weld joint	75
3.2.2	DSS to SDSS dissimilar weld joint	101
3.3	The effect of heat input and filler metal on the mechanical properties of bead-on-plate (similar) weld joints	114
3.3.1	Effect of heat input on hardness in WM and HAZ (BOP welds)	114
3.3.2	Effect of heat input on impact toughness in WM and HAZ (BOP welds)	115

3.4	The effect of heat input and filler metal on the mechanical properties of dissimilar full penetration butt welds	117
3.4.1	Effect of heat input and filler metal on hardness in WM and HAZ of SASS to Incoloy 28 dissimilar weld joint (butt welds)	117
3.4.2	Effect of heat input and filler metal on impact toughness of WM and HAZ of SASS to Incoloy 28 dissimilar weld joint (butt welds)	121
3.4.3	The effect of the heat input on the ultimate tensile strength of SASS to Incoloy 28 dissimilar weld joint	122
3.4.4	Effect of heat input and filler metal on hardness and ferrite content in weld metal and HAZ of DSS to SDSS dissimilar weld joints	123
3.4.5	Effect of heat input and filler metal on impact toughness of WM and HAZ of DSS to SDSS dissimilar weld joints	132
3.5	The effect of heat input and filler metal on the corrosion properties of bead-on-plate (similar) weld joints	133
3.6	The effect of heat input and filler metal on the corrosion properties of dissimilar weld joints	136
3.6.1	The effect of heat input and filler metal on the corrosion properties of SASS to Incoloy 28 dissimilar weld joint	136
3.6.2	The effect of heat input and filler metal on the corrosion properties of DSS to SDSS dissimilar weld joint	139
	Conclusions	141
	References	143

LIST OF TABLES

		Page
Chapter 1	: Introduction and Literature Survey	1
Table 1.1	Typical composition ranges for common superaustenitic stainless steels	5
Table 1.2	Room temperature mechanical properties of super austenitic stainless steels	7
Table 1.3	The PRE_N value for SASS, ASS, and Ni-base alloys	10
Table 1.4	Typical chemical composition of incoloy 28 according to ASTM B668	12
Table 1.5	The mechanical properties of Incoloy 28	13
Table 1.6	Composition and pitting resistance equivalent for DSS grades.	19
Table 1.7	Partition coefficient $\frac{([\delta])}{([\gamma])}$ of several elements between δ and γ .	20
Table 1.8	Room temperature mechanical properties of duplex stainless steels.	23
Table 1.9	Some of wrought super duplex grades.	34
Table 1.10	The effect of heat Input of SMAW on the mechanical properties	50
Table 1.11	The recommended welding electrodes for SASS, incoloy 28, DSS, and SDSS	51
Chapter 2:	Experimental Procedures	53
Table 2.1	Typical chemical composition of base metals of SASS, Incoloy 28, DSS, and SDSS	55
Table 2.2	The chemical composition of filler metals	56
Table 2.3	The welding parameters of SASS and Incoloy 28 BOP welds	57
Table 2.4	The welding parameters of SASS and Incoloy 28 dissimilar welds	57
Table 2.5	The welding parameters of DSS and SDSS dissimilar welds	57
Chapter 3:	Results and Discussion	63
Table 3.1	Effect of heat input on the ultimate tensile strength of the weld ioints	123

LIST OF FIGURES

		Page
Chapter	1: Introduction and Literature Survey	1
Figure 1.1	Schaeffler diagram for stainless steels	2
Figure 1.2	Typical microstructure of super austenitic stainless steel (S31254)	6
Figure 1.3	SASS has superior mechanical properties to that of ASS	7
Figure 1.4	Correlation between elongation and strength with strain rate	8
Figure 1.5	SEM micrographs of specimen hot deformed at 900° C and $0.1~{\rm s}^{\text{-1}}$ indicating worm-like precipitates at grain boundaries.	8
Figure 1.6	Isocorrosion diagram of SASS and ASS in sulfuric acid to produce corrosion of 0.1 mm/year	9
Figure 1.7	The critical pitting and crevice temperatures values of SASS, ASS, and DSS	10
Figure 1.8	SEM micrograph of SASS with sigma phase precipitated at austenite grain boundary and within the grain	11
Figure 1.9	The fully austenitic microstructure of Incoloy 28	12
Figure 1.10	Results of stress corrosion cracking tests on different steel grades in 40% CaCl2 at 100° C (210° F), pH = 6.5.	13
Figure 1.11	The correlation between CPT and the calculated pitting resistance using MARC	14
Figure 1.12	Different solidification modes of austenitic steels weld	14
Figure 1.13	Microstructure of SASS with secondary phase (sigma) at the centerline	16
Figure 1.14	The fracture surface of the incoloy 28 aged at a) 650 and b) $700^{\circ}\mathrm{C}$ for 3000 hr	16
Figure 1.15	Microstructure of a wrought duplex stainless steel	17
Figure 1.16	TTT Diagram showing the effect of alloying elements on precipitation reactions	22
Figure 1.17	The yield strength of duplex alloys compared with that of austenitic alloys	24
Figure 1.18	The influence of N addition on duplex offset yield and ultimate strength	24
Figure 1.19	Ductile to brittle transition phenomena for several steels	25
Figure 1.20	da/dN-ΔK relationship for duplex alloys in undeformed and prestrained conditions	26

Figure 1.21	Effect of cyclic plastic strain on fatigue life	27
Figure 1.22	SEM photos of pits shape (a) hemispherical and (b) Lacy covered	28
Figure 1.23	Steps for hydrogen-induced cracking	30
Figure 1.24	Optical and SEM micrographs after corrosion test of DSS aged a) at 800°C for 1000 min and b) at 650°C for 1000 min	30
Figure 1.25	The microstructure of weld metal of DSS welded with GTAW	31
Figure 1.26	Weld fusion zone microstructure of autogenous GTAW of SAF 2205	32
Figure 1.27	Microstructure of HAZ of DSS	32
Figure 1.28	Microstructure of super duplex stainless steel	34
Figure 1.29	Mechanical properties of SDSS compared with SFSS and SASS	36
Figure 1.30	Cyclic Stress-Strain curve of super duplex steels	38
Figure 1.31	PREN of single phase and CPT as function of annealing temperature	39
Figure 1.32	The typical microstructure of SDSS (a) weld metal and (b) HAZ	40
Figure 1.33	Weld metal solidification cracking	41
Figure 1.34	The effect of solidification type on grain boundary tortuosity: (a) A solidification mode and (b) FA solidification with skeletal ferrite	42
Figure 1.35	Weld solidification cracking as a function in composition	42
Figure 1.36	Effect of weld geometry on solidification cracking: (a) bead shape and (b) weld depth-width ratio	43
Figure 1.37	Weld decay in HAZ of 304 austenitic steel	43
Figure 1.38	Hot cracking due to liquation in (a) HAZ and (b) weld metal	4 4
Figure 1.39	Pitting of SASS weld metal associated with Mo depletion during solidification	45
Figure 1.40	The microstructure of the unmixed zone formed at fusion boundary between SASS and Ni-base filler metal	45
Figure 1.41	Sketch of the unmixed zone in heterogeneous weld	46
Figure 1.42	Pitting attack initiated at UMZ in GTA weld in S31254 steel made with ERNiCrMo-3 filler	46
Figure 1.43	Schematic of cross section of a bead-on-plate weld	49
Figure 1.44	The correlation between the heat input and cooling rate	49
Chapter 2	2: Experimental Procedures	53
Figure 2.1	Schematic sketch for the heat treatment and welding of Incoloy 28	56

Figure 2.2	Assembly for dissimilar weld joints of SASS/Incoloy 28 and DSS/SDSS	58
Figure 2.3	Dimensions of subsize tensile test specimen	58
Figure 2.4	The dimension of Charpy standard specimens (a) full-size and (b) sub-size	59
Figure 2.5	Assembly for hardness distribution through all regions of (a) BOP, (b) dissimilar single-V joint, and (c) dissimilar double-V joint.	60
Figure 2.6	The position of the sample before the test and the position of the Teflon blocks on the surface of the sample.	62
Chapter	3: Results and Discussion	63
Figure 3.1	The microstructure of cold worked Incoloy 28 after solution annealing temperature within the range of (850-1100°C) for time (30 and 60 minutes) at higher magnification	65
Figure 3.2	The microstructure of base metals of Incoloy 28 and SASS	66
Figure 3.3	The effect of heat inputs of 1, 3 and 5 kJ/mm on the precipitates of WM used to weld Incoloy 28 and of SASS	67
Figure 3.4	SEM photograph for possible precipitates at WM. Photograph contains the positions of spectra and their semi quantitative analysis	68
Figure 3.5	The influence of heat inputs of 1, 3 and 5 kJ/mm on the microstructure of HAZ and fusion line of Incoloy 28 and SASS	69
Figure 3.6	SEM Photographs and elements distributions through HAZ, fusion zone FZ (or UMZ), and WM for Incoloy 28 welded with heat input of 1, 3, and 5 kJ/mm	71
Figure 3.7	SEM Photographs and elements distributions through HAZ, UMZ, and WM for SASS welded with heat input of 1, 3, and 5 kJ/mm	72
Figure 3.8	The effect of the heat input on the Mo content at dendrite core and interdendrite spacing of UMZ at Incoloy 28 and SASS weld joints (a), and on the ratio of Mo content in interdendrite spacing to that in dendrite core (b).	74
Figure 3.9	The variation of UMZ width at each heat input for Incoloy 28 and SASS	75
Figure 3.10	The microstructure of the base metals of SASS and Incoloy 28 at the three conditions	76
Figure 3.11	The effect of heat input on the microstructure of weld metal of dissimilar weld joint at CN1	77

Figure 3.12	The effect of heat input on the microstructure of weld metal of	78
	dissimilar weld joint at CN2	70
Figure 3.13	The effect of heat input on the microstructure of weld metal of	79
	dissimilar weld joint at CN3	19
Figure 3.14	SEM photograph for possible precipitate at WM of SASS/Incoloy 28	
	dissimilar weld joint. Photographs contain the positions of spectrum	80
	and the semiquantitative analysis of spectrum.	
Figure 3.15	The effect of heat input on the microstructure of HAZ and UMZ of	81
	dissimilar weld joints at CN1	01
Figure 3.16	The effect of heat input on the microstructure of HAZ and UMZ of	82
	dissimilar weld joints at CN2	02
Figure 3.17	The effect of heat input on the microstructure of HAZ and UMZ of	83
	dissimilar weld joints at CN3	0.5
Figure 3.18	Microstructure through the HAZ of cold worked Incoloy 28 side of	84
	dissimilar joint	04
Figure 3.19	SEM Photographs and elements distributions through HAZ, UMZ,	
	and WM for Incoloy 28 side of joint at CN1 and welded with heat	85
	input of 1, 3, and 5 kJ/mm	
Figure 3.20	SEM Photographs and elements distributions through HAZ, UMZ,	
	and WM for SASS side of joint at CN1 and welded with heat input	86
	of 1, 3, and 5 kJ/mm	
Figure 3.21	SEM Photographs and elements distributions through HAZ, UMZ,	
	and WM for Incoloy 28 side of joint at CN2 and welded with heat	87
	input of 1, 3, and 5 kJ/mm	
Figure 3.22	SEM Photographs and elements distributions through HAZ, UMZ,	
	and WM for SASS side of joint at CN2 and welded with heat input	88
	of 1, 3, and 5 kJ/mm	
Figure 3.23	SEM Photographs and elements distributions through HAZ, UMZ,	
	and WM for Incoloy 28 side of joint at CN3 and welded with heat	89
	input of 1, 3, and 5 kJ/mm	
Figure 3.24	SEM Photographs and elements distributions through HAZ, UMZ,	
	and WM for SASS side of joint at CN3 and welded with heat input	90
	of 1, 3, and 5 kJ/mm	