Prone versus Supine Positioning for Breast Cancer Radiotherapy in Patients with Pendulous Breast

Thesis

Submitted for Partial Fulfillment of M.D. Degree in Clinical Oncology and Nuclear Medicine

By Eman Abdelnaby Amin

M.B., B.Ch, M.Sc. Faculty of Medicine - Ain Shams University

Supervised by **Prof. Dr. Soheir Helmy Mahmoud**

Professor of Clinical Oncology and Nuclear Medicine Faculty of Medicine - Ain Shams University

Prof. Dr. Amin El-Sayed Ahmed Amin

Professor of Radiation Physics Faculty of Medicine - Ain Shams University

Prof. Dr. Ahmed Ezzat Essa

Professor of Clinical Oncology and Nuclear Medicine Faculty of Medicine - Ain Shams University

Prof. Dr. Mohammed Sabry Elkady

Assistant Professor of Clinical Oncology and Nuclear Medicine Faculty of Medicine - Ain Shams University

Dr. Doaa Atef Mohammed

Lecturer Of clinical Oncology and Nuclear Medicine Faculty of Medicine - Ain Shams University

> Faculty of Medicine Ain Shams University 2018

First and foremost, Thanks are due to **ALLAH** the most merciful and the mightiest to whom I relate my success in achieving any work in my life.

No words can express my deepest appreciation and profound respect to **Prof. Dr. Soheir Helmy Mahmoud,** Professor of Clinical Oncology and Nuclear Medicine, Ain Shams University, for her continuous guidance and support. She has generously devoted much of her time and her effort for planning and supervision of this study.

Also, my profound gratitude to **Prof. Dr. Amin El-Sayed Ahmed Amin**, Professor of Radiation Physics, Ain Shams University, for his kind supervision and support. It was great honor to work under his supervision.

I would like also to thank **Prof. Dr. Ahmed Ezzat Essa**, Professor of Clinical Oncology and Nuclear Medicine, Ain Shams University, for his support, help and constructive criticism during this work.

I would like also to thank **Prof. Dr. Mohammed Sabry Elkady,** Assistant Professor of Clinical Oncology and Nuclear Medicine, for his support and help during this work.

Also, my profound gratitude to **Dr. Doaa Atef Mohammed,** Lecturer Of clinical Oncology and Nuclear
Medicine, Ain Shams University, for her great care and
support.

Last but not least, I dedicate this work to **my** family, whom without their sincere emotional support, pushing me forward this work would not have ever been completed.

Contents

Subject	Page No.
List of Figures	I
List of Tables	V
List of Abbreviations	VII
Introduction	1
Aim of the Work	5
- Chapter (1): Epidemiology	6
- Chapter (2): Diagnosis of Breast Cancer	12
- Chapter (3): Staging of Breast Cancer	25
- Chapter (4): Prognostic and Predictive F	actors of
Breast Cancer	29
- Chapter (5): Overview on Management of	of Early
Staged Breast Cancer	43
- Chapter (6): Radiobiological Review in E	Breast
Irradiation	59
- Chapter (7): Whole Breast Irradiation in	Early
Stage Breast Cancer	76
Patients and Methods	115
Results	130
Discussion	155
Conclusion and Recommendations	164
Summary	165
References	
Arabic Summary	١

List of Figures

Figure	Títle	Page
Fig. 1	Female breast anatomy	8
Fig. 2	The lymphatic drainage of the breast	10
	flows toward the axillary and internal	
	mammary lymph nodes	
Fig. 3	Treatment planning computed	11
	tomography scan of the chest	
	demonstrating the location of the	
	internal mammary vessels	
Fig. 4	Classification of breast density based on	13
	the breast imaging-reporting and data	
	system	
Fig. 5	Dynamic Contrast Enhanced Magnetic	15
	Resonance Imaging (DCE-MRI) of the	
Eia (right breast cancer	10
Fig. 6	Dedicated breast CT (DBCT) for patients with left breast cancer	18
Fig. 7	The histological classification of breast	23
116. /	cancer subtypes that is most commonly	23
	used by clinicians	
Fig. 8	Prognostic and predictive factors in	29
116.0	breast cancer	2,
Fig. 9	Approach to adjuvant endocrine therapy	54
Fig. 10	ESMO Clinical Practice Guidelines	56
Fig. 11	The dose-response relationship for late-	60
- 181 ± ±	responding tissues is more curved than	00
	for early responding tissues in the linear-	
	quadratic formulation	
	quadratic for intulation	

Figure	Títle	Page
Fig. 12	Possible cellular interactions and events	72
	after irradiation of lung tissue	
Fig. 13	MT-350 Carbon Fiber Breast board	77
Fig. 14	Example of free breathing and deep	78
	inspiration breath hold plans for a single	
	patient	
Fig. 15	Access™ Prone Breast Device	80
Fig. 16	Example of a patient with better	82
	exclusion of the In-field heart and lung	
	volumes with prone position compared	
	with supine position	
Fig. 17	Examples of prone breast and external	91
	beam APBI plan	
Fig. 18	Treatment plans in supine and prone	95
	setup	
Fig. 19	Treatment Verification	102
Fig. 20	Common skin reactions in patients	105
	receiving breast radiation therapy	
Fig. 21	Radiation Pneumonitis after	112
	radiotherapy for patient with right	
	breast cancer treated over a period of 5	
	weeks	
Fig. 22	Left breast target volume delineation and	121
	organ at risk (heart and left lung).	
Fig. 23	Left breast conformal radiotherapy	133
	treatment plans in supine (a,b) position	
	with 1360 cc3 breast volume	

Figure	Títle	Page
Fig. 24	Right breast conformal radiotherapy treatment plans in prone (a,b) position with 1453 cc3 breast volume	134
Fig. 25	Right breast conformal radiotherapy treatment plans in prone (a,b) position with 2039 cc3 breast volume	135
Fig. 26	Right breast conformal radiotherapy treatment plans in supine position with 1130 cc3 breast volume	136
Fig. 27	Left breast conformal radiotherapy treatment plans in prone (a,b) position with 1888 cc3 breast volume	137
Fig. 28	Left breast conformal radiotherapy treatment plans in prone position with 2200 cc3 breast volume	138
Fig. 29	Right breast conformal radiotherapy treatment plans in prone position with 1376 cc3 breast volume	139
Fig. 30	Left breast conformal radiotherapy treatment plans in supine (a,c) and prone (b,d) position with 1227 cc3 breast volume	141
Fig. 31	Left breast conformal radiotherapy treatment plans in supine (a,c) and prone (b,d) position with 1450 cc3 breast volume	143

List of Figures

Figure	Títle Po		
Fig. 32	Heart V25Gy in prone and supine setup	146	
Fig. 33	Heart V5Gy in prone and supine setup	147	
Fig. 34	Mean heart dose in prone and supine	147	
	setup		
Fig. 35	Ipsilateral Lung V10 Gy in prone and	148	
	supine setup		
Fig. 36	Ipsilateral Lung V20 Gy in prone and	149	
	supine setup		
Fig. 37	Ipsilateral mean Lung dose in prone and	149	
	supine setup		

List of Tables

Table	Títle			
Table 1	AJCC: TNM breast cancer staging	26		
Table 2	American Joint Commission on Cancer	28		
	TNM Anatomic Stage Groups			
Table 3	Four Major Subtypes of Invasive Breast	36		
	Cancer Used Clinically			
Table 4	Contraindication of BCS as	44		
	recommended by panel the 13th St.			
	Gallen Consensus			
Table 5	Patient characteristics and outcomes of	63		
	four key randomized trials of			
	hypofractionated whole breast			
	irradiation			
Table 6	Tolerance doses and fractionation	64		
	response (α/β ratio) for acute and late			
	organ damage in humans			
Table 7	Clinical symptoms of acute radiation	66		
	dermatitis			
Table 8	Comparison of patient groups in	90		
	original and updated consensus			
	statements			
Table 9	Risk factors for RIHD	110		
Table 10	The main patient and disease	131		
	characteristics			
Table 11	The photon energies used in patients	144		
	treated in supine and prone position			

List of Tables

Table	Títle			
Table 12	Comparison of dosimetric parameters	145		
	from treatment plans obtained in the			
	two positions for the whole patients			
	series			
Table 13	Assessment of lung toxicities using CT			
	chest			
Table 14	Acute and chronic skin toxicitiesin the			
	two positions for the whole patient's			
	series (50 patients) scored			
	prospectively using CTCAE Version 4.0			

List of Abbreviations

Abb.	Full term
ADL	 Activities of Daily Living
2D	 Two-dimensional
3D-CRT	 Three dimensional conformal radiotherapy
ACR	 American College of Radiology
AJCC	 American Joint Committee on
	Cancer
APBI	 Accelerated Partial Breast Irradiation
BCT	 Breast conservation therapy
BI-RADS	 Breast imaging-reporting and
	data system
CBC	 Complete blood count
CBCT	 Cone-beam CT
CC	 Craniocaudal
CCRT	 Concurrent chemoradiotherapy
CF-WBI	 Conventional fractionated WBI
CI	 Contraindication
CI	 Conformity index
CT	 Computed tomography
CTCAE	 Common toxicity criteria for adverse events
CTV	 Clinical target volume
CVD	 Cardiovascular disease
DBT	 Digital breast tomosynthesis
DCE-MRI	 Dynamic contrast enhanced magnetic resonance imaging
DCIS	 Ductal carcinoma in situ
EACVI	 European Association of Cardiovascular Imaging

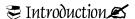
Abb.	Full term
EGFR	 Epidermal growth factor receptor
EIC	 Extensive intraductal Carcinoma
ER	 Estrogen receptor
ET	 Endocrine therapy
FiF	 Field in field
GBT	 Glandular breast tissue
HF-WBI	 Hypofractionated WBI
HG	 Histological grade
НІ	 Homogeneity index
IBE	 ipsilateral breast event
IBTR	 ipsilateral breast tumor
	recurrence
IHC	 Immunohistochemistry
IMC	 Internal mammary lymph node chain
IMNI	 Internal mammary node irradiation
IMRT	 Intensity-modulated radiation therapy
Ki-67	 Proliferation marker
LAD	 Long anterior descending
LFTs	 Liver function tests
LRFS	 Local-recurrence-free survival
LVI	 Lymphovascular invasion
MF/MC	 Multifocality and multicentricity
MLC	 Multileaf collimator
MLO	 Mediolateral oblique
MRI	 Magnetic resonance Imaging
NCI	 National Cancer Institute
OARs	 Organs at risk
OFS	 Ovarian function suppression
PMRT	 Post mastectomy RT

List of Abbreviations

Abb.	Full term
PPV	 Positive predictive value
PR	 Progesterone receptor
QUANTEC	 Quantitative Analysis of Normal Tissue Effects in the Clinic
RAPID	 Randomized trial of accelerated Partial breast irradiation
RIHD	 Radiation-induced heart disease
RIPF	 Radiation-induced pulmonary fibrosis
RS	 Recurrence score
SLNB	 Sentinel lymph node biopsy
SMNs	 Secondary malignant neoplasms
SRI	 Surgery-radiotherapy interval
SSO/ASTRO	 Society of Surgical Oncology and the American Society for Radiation Oncology
TNBC	 Triple-negative breast cancers
US	 Ultrasonography
WBI	 Whole breast irradiation

Introduction

Breast cancer is one of the most common cancers in women and ranks first in cancer death within the 20-59 year age group. Surgical treatment for breast cancer had traditionally been radical mastectomy. Over the past decade, the decrease in death rates from breast cancer is largely attributed to the improvements in early detection and treatment (*Jemal et al.*, 2014).


Women presented with early stage breast cancer have the option of electing breast-conserving surgery with adjuvant whole breast irradiation and has been shown in several large randomized controlled trials to yield local control and survival rates equivalent to those of mastectomy (*Darby et al.*, 2011).

Whole breast irradiation is typically delivered in the supine position, which is considered to deliver adequate results while also having a more reproducible set up. However, in the case of patients with pendulous breasts, potential clinical problems arise when trying to adequately treat the planned target volume, while sparing critical structures including lung and heart. Adverse events following irradiation of breast include pain, pigmentation

and ulceration of the skin, soft tissue fibrosis, myocardial infarction, pericardial effusion, and asymptomatic or symptomatic lung damage had been reported (*Henson et al.*, 2013).

Many studies had reported that radiation-related late cardiovascular damage was attributed to the increased non-breast cancer related death rate and was a trade-off for the increased local control and overall survival. Wang et al. tracked 12,696 patients with breast cancer from 1995 to 2005 and found that coronary artery dysfunction was not more increased in left breast cancer patients than in right ones at an early time after radiotherapy; however, the risk significantly increased in these patients after 10–15 years (*Wang et al., 2011*). Another study on the dose-volume effect of the heart showed that cardiovascular-related deaths 15 years post radiotherapy would be less than 1% if the V25 of the heart was less than 10% (*Gagliardi et al., 2010*).

Radiation pneumonitis is a form of acute or subacute lung damage related to the dose of radiation. It develops along the irradiated fields with a dose > 20 Gy and results in pulmonary fibrosis (*Yumi Oie et al.*, 2013).

Several studies showed advantages of the prone position as regard more homogenous dose distribution with a reduction in the size of the hot spots, resulting in decreased acute reactions, and irradiation of less normal tissue especially in patients with pendulous breast (*Morrow et al.*, 2007). Other studies showed that, the prone position was better than the supine position for sparing both lung and the heart in the majority of left breast cancer patients, especially in case of large breasts (*Kirby et al.*, 2010).

A prospective single institution trial of four hundred patients demonstrated that the prone position was associated with reduced in-field lung volumes compared with supine (86.2% reduction for right breast cancer, a 91.1% reduction for left breast cancer). In patients with left breast cancer, the prone position was associated with a reduction of in-field heart volumes compared with supine (85.7% reduction) (*Formenti et al.*, 2012).

Prone breast radiotherapy also provided better cosmetic outcomes for patients with pendulous breast compared to those observed in supine series because there is often improved breast positioning at the inframammary fold. Minimizing fold reduces a blousing effect, acute skin dermatitis and erythema in this area (*Tran et al., 2011*).