

APPLICATION OF GEOELECTRICAL MEASUREMENTS FOR DETECTING THE GROUND-WATER SEEPAGE IN CLAY AND LIMESTONE QUARRIES AT HELWAN, SOUTHEASTERN CAIRO, EGYPT

A THESIS SUBMITTED FOR PARTIAL FULFILLMENT FOR THE REQUIREMENTS OF THE DEGREE OF MASTER OF SCIENCE (M.Sc.) IN GEOPHYSICS

By

Mohamed Salah El-Din Ahmed Abd El-Latif

B.Sc. In Geophysics, Geophysics Department, Faculty Of Science, Ain Shams University

SUPERVISED BY

Dr.Ahmed Moustafa El-Sayed Abd El-Gawad Dr.Ahmad Muhammad Sobhy Ahmad Helaly

Associate Professor of Geophysics
Department of Geophysics
Faculty of Science
Ain Shams University

Associate Professor of Geophysics
Department of Geophysics
Faculty of Science
Ain Shams University

CAIRO-2018

Application of GeoElectrical Measurements for Detecting the Ground-Water Seepage in Clay and Limestone Quarries at Helwan, SouthEastern Cairo, Egypt

A Thesis Submitted for Partial Fulfillment for the Requirements of the Degree of Master of Science (M.Sc.) in Geophysics

By

Mohamed Salah El-Din Ahmed Abd El-Latif (B.Sc. in Geophysics – Faculty of Science – Ain Shams University – 2012)

To

Geophysics Department Faculty of Science Ain Shams University

Supervised by

Ass. Prof. Ahmed Moustafa Abd El-Gawad Associate Professor of Geophysics

Geophysics Department – Faculty of Science Ain Shams University – Cairo – Egypt

Ass. Prof. Ahmad Muhammad Sobhy Helaly

Associate Professor of Geophysics Geophysics Department – Faculty of Science Ain Shams University – Cairo – Egypt

Approval Sheet

Application of Geoelectrical Measurements for Detecting the Ground-Water Seepage in Clay and Limestone Quarries at Helwan, Southeastern Cairo, Egypt

A Thesis Submitted for Partial Fulfillment for the Requirements of the Degree of Master of Science (M.Sc.) in Geophysics

By

Mohamed Salah El-Din Ahmed Abd El-Latif

(B.Sc. in Geophysics – Faculty of Science – Ain Shams University – 2012)

Geophysics Department
Faculty of Science
Ain Shams University

Approved

Advisors

Ass. Prof. Ahmed Moustafa El-Sayed Abd El-Gawad (Ain Shams University)
Ass. Prof. Ahmad Muhammad Sobhy Ahmad Helaly (Ain Shams University)
Head of Geophysics Department Prof. Dr. Sami Hamed Abdel-Nabi

Note

The present thesis is submitted to the Faculty of Science, Ain Shams University, in partial fulfillment for the requirements of the Master degree of Science in Applied Geophysics. Besides the research work materialized in this thesis, the author has attended eleven postgraduate courses for one academic year in the following topics:-

- 1) Geophysical Field Measurements.
- 2) Numerical Analysis & Computer Programming.
- 3) Petrophysical Properties of Rocks.
- 4) Advanced Well Logging.
- 5) Formation Evaluation.
- 6) Reservoir Evaluation.
- 7) Subsurface Geology.
- 8) Geophysical Prospecting.
- 9) Sedimentary Basin Analysis.
- 10) Fluid Dynamics.
- 11) English Language.

He successfully passed the final examination in these courses.

Prof. Dr. Sami Hamed Abdel-Nabi

Head of Geophysics Department

سلم الله الرّحمر ab özgu الم وَقُل رُبُ زِنْنِي

إلى (114) المله

DEDICATION

TO

MY FATHER, MOTHER AND SISTER

TO

EVERY DEAR HELPFUL FRIEND

Mohammed Salah

ACKNOWLEDGMENTS

Firstly and before all, my complete praise is for **Almighty God, Allah**, lord of the universe, who guided and blessed me during the preparation of this work.

I would like to thank and express my great appreciation to My Supervisor Dr. Ahmed Abdel Gawad, Associate professor of Geophysics, Faculty of Science, Ain Shams University, for his generous supervision, professional observations and experienced guidance.

I also wish to express my deep thanking and gratitude to My Supervisor Dr. Ahmad Sobhy Helaly, Associate professor of Geophysics, Faculty of Science, Ain Shams University, for his supervision, encouragement, stimulating guidance, valuable discussion and suggestions.

Finally, from all my heart, I would like to express my deepest gratitude and appreciation to My Family for their help and encouragement.

Mohammed Salah

APPLICATION OF GEOELECTRICAL MEASUREMENTS FOR DETECTING THE GROUND-WATER SEEPAGE IN CLAY AND LIMESTONE QUARRIES AT HELWAN, SOUTHEASTERN CAIRO, EGYPT

ABSTRACT

The qualitative and quantitative interpretations of the available geophysical data (particularly gravity and electrical resistivity data) are carried out in the study area to indicate subsurface geological inferences. The area under study is located at Helwan, southeastern Cairo between latitudes 29°46' N & 29°50' N and longitudes 31°21' E & 31°25' E.

The interpretations of the gravity data are done in the form of separation of the regional and residual gravity anomalies, in which the regional gravity anomalies reflect the deep seated geological effects and the residual anomalies reflect the shallow seated geological effects. After that the filtering of Bouguer gravity anomalies is carried out. This technique is used to separate the residual anomalies from the regional anomalies from the anomalies existed within a certain interval of depth. It is also beneficial in attenuating the extraneous factors affecting a certain depth range and enhancing the wanted effects of the other depth ranges. In addition, trend analysis is applied on the results of discriminating the faulting picture at successive levels (0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5 & 5 Kilometers) to determine the fault systems dissecting the sedimentary section and the basement complex. Accordingly, the major tectonic trends are mainly oriented NNE-SSW, NW-SE, NNW-SSE, ENE-WSW & NE-SW in decreasing orders. Finally, the depths to the basement are determined and ranging between 1.9 km & 3.2 km.

Ten vertical electrical soundings in addition to seven dipoledipole profiles are conducted in Helwan limestone quarry. On the other hand, fifteen vertical electrical soundings are conducted in Helwan clay quarry. These measurements are done to know the detailed information about the source and extension of the water seepage on the floor of quarries. In Helwan clay quarry, the results suggest passage of groundwater from the adjacent areas via channel ways formed due to the excavation process. All over the measured area, there are some sand lenses intercalated with clays & during the excavation process, some channels formed and the groundwater started to percolate through these channels forming many water pools along the quarry floor. On the other hand, in Helwan limestone quarry; the results suggest passage of groundwater from the adjacent areas via channel ways formed due to reopening of the fissures and cracks in the fault zone. The fissures are a direct consequence of maximizing explosive quantities, groundwater percolates through the new rock openings in the fault zone from the source at the NW direction of the quarry to the lower level in the quarry floor.

Subject	Page No.
ACKNOWLEDGMENTS	I
ABSTRACT	II
LIST OF CONTENTS	IV
LIST OF FIGURES	VIII
LIST OF TABLES	XVII
CHAPTER 1: INTRODUCTION	1
1.1)Location of Study Area	2
1.2)Importance of Study Area	3
1.3)Scope of Work	5
1.4)Previous Geophysical Exploration Activities	6
1.4.1.Gravity & Geodetic Exploration	6
1.4.2.Magnetic Exploration	7
1.4.3.Geoelectrical & Hydrogeological Exploration	8
CHAPTER 2: GENERAL GEOLOGICAL SETTING	10
2.1)Introduction	10
2.2)Topography	10
2.2.1.El-Mokattam Hills	11
2.2.2.The plains of the Nile River	11
2.3)Geomorphology	11
2.4)Surface Geology	12
2.4.1.Eocene	13
2.4.1.1.Mokattam Group	15
2.4.1.2.Maadi Group	15
2.4.2.Pliocene	16
2.4.3.Quaternary	17
2.5)Subsurface Stratigraphy	17
2.5.1.Eocene Rocks	19
2.5.2.Oligocene Rocks	19
2.5.3.Miocene Rocks	20
2.5.4.Pliocene Rocks	20
2.5.5.Quaternary Rocks	20
2.6)Structures	20
2.6.1.General Structures	20
2.6.2.Local Structures	22
2.6.2.1. The structures of the Nile Valley close to the study area	22
2.6.2.2. The structures of the Eastern Desert part of the study area	23

Subject	Page No.
2.6.3.Structural setting of the study area	25
2.7)Tectonics	26
2.8)Geological History	30
2.8.1.Paleozoic	30
2.8.2.Mesozoic	30
2.8.3.Cenozoic	32
2.9)Hydrogeological Setting	34
2.9.1.Quaternary Aquifers	35
2.9.2.Tertiary Aquifers	35
2.9.2.1.Pliocene Aquifer	35
2.9.2.2.Eocene Aquifer	35
CHAPTER 3: GRAVITY INTERPRETATION	37
3.1)Introduction	37
3.2)Gravity Data	43
3.3)Gravity Separation	44
3.3.1.Regional Anomaly Map	46
3.3.2.Residual Anomaly Map	48
3.3.3.Second Vertical Derivative (SVD) Anomaly Map	50
3.4)Gravity Filtering	52
3.4.1.Connection Between Separation & Filtering	54
3.4.2.Filtering Theory	54
3.4.3.Low-Cut Gravity Filtering	59
3.4.4.High-Cut Gravity Filtering	64
3.4.5.Band-Pass Gravity Filtering	69
3.5)Gravity Tectonic Detailing	73
3.5.1.Fault Elements At 0.5 km. Depth	78
3.5.2.Fault Elements At 1.0 km. Depth	81
3.5.3.Fault Elements At 1.5 km. Depth	81
3.5.4. Fault Elements At 2.0 km. Depth	81
3.5.5.Fault Elements At 2.5 km. Depth	85
3.5.6.Fault Elements At 3.0 km. Depth	85
3.5.7.Fault Elements At 3.5 km. Depth	85
3.5.8.Fault Elements At 4.0 km. Depth	89
3.5.9.Fault Elements At 4.5 km. Depth	89
3.5.10.Fault Elements At 5.0 km. Depth	89
3.6) Gravity Basement Depth Determination	93
CHAPTER 4: GEOELECTRICAL BASICS	99
4.1)Introduction	99

Subject	Page No.
4.2)Electrical Properties of Rocks	101
4.3)Principles of Resistivity Methods	103
4.3.1.Principles	104
4.3.2.Electrode arrays	105
4.3.2.1. Wenner array	105
4.3.2.2. Two-electrode (pole–pole) array	107
4.3.2.3. Schlumberger array	107
4.3.2.4. Gradient array	107
4.3.2.5. Dipole–dipole (Eltran) array	107
4.3.2.6. Pole–dipole array	108
4.3.2.7. Square array	109
4.3.2.8. Lee array	109
4.3.2.9. Offset Wenner	109
4.3.2.10.Focused arrays	109
4.4)Resistivity Survey Instruments	109
4.5)Resistivity Measurements	110
4.5.1. Vertical Electrical Sounding (VES)	111
4.5.2.Resistivity Profiling	113
4.6)Investigation Depth & Layer Resolution	115
4.7)Resistivity Data Interpretation	117
4.7.1. Vertical Electrical Sounding (VES) Interpretation	117
4.7.2.Resistivity Profiling Interpretation	120
4.8)Limitations of Resistivity Method	121
CHAPTER 5: HELWAN LIMESTONE QUARRY PROBLEM	123
5.1)Introduction	123
5.2)Measured Field Data In Limestone Quarry	130
5.3)Resistivity Data Interpretation	130
5.3.1. Vertical Electrical Sounding (VES) Interpretation	140
5.3.2.Geoelectrical Cross-sections	147
5.3.3.Dipole-Dipole Configuration (2-D Imaging)	152
5.4)Quarry Drilling Data	166
5.5)Hydrochemical Data	168
CHAPTER 6: HELWAN CLAY QUARRY PROBLEM	174
6.1)Introduction	174
6.2)Measured Field Data In Clay Quarry	182
6.3)Resistivity Data Interpretation	182
6.3.1. Vertical Electrical Sounding (VES) Interpretation	182
6.3.2.Geoelectrical Cross-sections	194

Subject	Page No.
6.4)Quarry Drilling Data	205
6.5)Hydrochemical Data	206
CHAPTER 7: SUMMARY & CONCLUSIONS	212
APPENDIX A	219
APPENDIX B	226
REFERENCES	229

LIST OF FIGURES

Figi No		Figure Caption	Page No.
CHAPTER 1	1.1	Location map of the study area.	3
	2.1	Location map for the Helwan limestone quarry from Google Earth.	12
	2.2	Main geomorphologic features in the area under study.	13
2.3 2.4 2.5 2.6 2.7 2.8 2.9 2.10 2.11	2.3	Geological map of the study area (Modified after the Egyptian Geological Survey and Mining Authority, 1983).	14
	2.4	Lithological sections of Helwan area; (After Strougo, 1986).	18
	2.5	1, 1a, 1b, $1c = Gulf$ of Suez trend (about N350 W); 2, 2a, 2b, $2c = Gulf$ of Aqaba trend (about N150 E); 3 (Central Sinai fault), 3a, 3b, $3c = east$ west trend; 4, 4a, $4b = north$ south trend; $5 = N450$ W. (After Youssef, 1968).	21
	2.6	Geological map of 15^{th} of May City; (After Mohammed, et al. 2012).	23
	2.7	Photos show a normal fault where the layers of the downthrown are dipping southward (a) at the observation point (293) and (b) at observation point (269), Mohammed, et al. (2012).	24
	2.8	Sketch of the structural aspects of the Nubian-Arabian shield margin in Northern Egypt; (After Meshref, 1982).	29
	2.9	Paleographic maps showing maximum extension of sea (Dotted) over Egypt from Cambrian to Cretaceous (After Soliman & Faris, 1963).	31
	2.10	Paleographic maps showing maximum extension of sea (Dotted) over Egypt from Eocene to Plaeolitic (After Soliman & Faris, 1963).	33
	2.11	Schematic hydrogeological cross section illustrating generalized direction of groundwater flow paths (Modified from Abdu 1994).	36

LIST OF FIGURES

Figu		Figure	Page
No		Caption	No.
3.1		Bouguer gravity anomaly map of the study area.	42
ļ	3.2	Regional gravity anomaly map of the study area.	47
	3.3	Residual gravity anomaly map of the study area.	49
3.5 3.6 3.7 3.8 3.9 3.10 3.11 3.12 3.13 3.14 3.15	3.4	Second vertical derivative anomaly map of the study area.	53
	3.5	Gravity anomaly map filtered with an 8-unit regional filter.	60
	3.6	Gravity anomaly map filtered with a 16-unit regional filter.	61
	3.7	Gravity anomaly map filtered with a 21.3-unit regional filter.	62
	3.8	Gravity anomaly map filtered with an 8-unit residual filter.	65
	3.9	Gravity anomaly map filtered with a 16-unit residual filter.	66
	3.10	Gravity anomaly map filtered with a 21.3-unit residual filter.	67
	3.11	Gravity anomaly map filtered with a 16 to 8-unit bandpass filter.	70
	3.12	Gravity anomaly map filtered with a 21.3 to 16-unit band-pass filter.	71
	3.13	Gravity anomaly map filtered with a 21.3 to 8-unit band-pass filter.	72
	3.14	Master curves corresponding to the geological models of the assumed faults (Produced By Abu El-Ata, 1973).	76
	3.15	A Map showing the fault elements dissecting the depth range of the sedimentary section in addition to the azimuth-frequency diagram of these elements.	79
	3.16	A Map showing the fault elements dissecting the depth range of 0.5 km in addition to the azimuth-frequency diagram of these elements.	80
	3.17	A Map showing the fault elements dissecting the depth range of 1.0 km in addition to the azimuth-frequency diagram of these elements.	82