

Enhancement of Grid Connected Variable Speed Direct-Drive PMSG-Based Wind Energy Conversion System (WECS) through integration of Flywheel Energy Storage System (FESS)

By

Ahmed Mohamed Abd El-Baset El-Komy

A Thesis submitted to the
Faculty of Engineering at Cairo University
In Partial Fulfillment of the
Requirements for the Degree of

MASTER OF SCIENCE

In

Electrical Power and Machines Engineering

Enhancement of Grid Connected Variable Speed Direct-Drive PMSG-Based Wind Energy Conversion System (WECS) through integration of Flywheel Energy Storage System (FESS)

By **Ahmed Mohamed Abd El-Baset El-Komy**

A Thesis submitted to the
Faculty of Engineering at Cairo University
In Partial Fulfillment of the
Requirements for the Degree of

MASTER OF SCIENCE

In

Electrical Power and Machines Engineering

Under supervision of

Prof. Dr. Amr Amin Adly

Dr. Ahmed Ali Huzayyin

Electrical Power and Machines Department Faculty of Engineering, Cairo University

Electrical Power and Machines Department Faculty of Engineering, Cairo University

Dr. Tamer Mamdoh Abdo

Electrical Power and Machines Department Faculty of Engineering, Cairo University

2018

Enhancement of Grid Connected Variable Speed Direct-Drive PMSG-Based Wind Energy Conversion System (WECS) through integration of Flywheel Energy Storage System (FESS)

By

Ahmed Mohamed Abd El-Baset El-Komy

A Thesis submitted to the
Faculty of Engineering at Cairo University
In Partial Fulfillment of the
Requirements for the Degree of

MASTER OF SCIENCE

In

Electrical Power and Machines Engineering

Approved by the Examining Committee:

Prof. Dr. Amr Amin Adly

Thesis Main Advisor

Prof. Dr. Mohab Mokhtar Hallouda

Internal Examiner

Prof. Dr. Elwy Eissa El-Kholi

(Faculty of Engineering, Menoufia University)

Engineer's Name: Ahmed Mohamed Abd El-Baset El-Komy

Date of Birth: 03-09-1992 **Nationality:** Egyptian

E-mail: Ahmedelkomy3992@gmail.com

Phone: (+2) 01124086066

Address: Hadayek Helwan – Cairo

Registration Date: 01/10/2014 **Awarding Date:** ---/-2018

Degree: Master of Science

Department: Electrical Power and Machines Engineering

Supervisors: Prof. Dr. Amr Amin Adly

Dr. Ahmed Ali Huzayyin Dr. Tamer Mamdoh Abdo

Examiners: Prof. Dr. Amr Amin Adly, Thesis Main Advisor

Prof. Dr. Mohab Mokhtar Hallouda, Internal Examiner Prof. Dr. Elwy Eissa El-Kholi, External Examiner (Professor, Faculty of Engineering, Menoufia University)

Title of Thesis:

Enhancement of Grid Connected Variable Speed Direct-Drive PMSG-Based Wind Energy Conversion System (WECS) through integration of Flywheel Energy Storage System (FESS)

Key Words:

Wind Energy Conversion Systems, Flywheel Energy Storage Systems, Maximum Power Point Tracking, Active and Reactive Power Control, Low Voltage Ride-Through Capability

Summary:

This thesis presents a study of improving grid connected wind energy conversion systems through the integration with flywheel energy storage systems. The study has shown the effectiveness of flywheel system to control the grid active and reactive power simultaneously, while extracting the maximum power from the wind generator considering a variable wind speed profile. Also, the study has proved the ability of the flywheel system to enhance the low voltage ride-through capabilities of the wind generator. MATLAB / SIMULINK models have been conducted showing the different integration topologies between the wind and flywheel systems. Finally, the study presents recommendations for the convenient integration topology based on the performance required from the integrated system.

ACKNOWLEDGMENTS

First of all, I would like to thank Allah, the most gracious, the most merciful, for giving me the patience and guidance to complete this work.

I would like to express my thanks to my supervisor, **Prof. Dr. Amr Adly**, for his encouragement, helpful advice and the time he offered me during research period. His patience and kindness are greatly appreciated. I couldn't accomplish my present achievements without his support and motivation. I feel tremendously lucky to have had the opportunity to work with him.

I would like deeply to express my sincere thanks and heartiest gratitude to my supervisor, **Dr. Ahmed Huzayyin**, for his great faithful supervision, his guidance and encouragement during all stages of this research. His knowledge as well as his kind and friendly personality have been always inspirational to me. Without his constructive comments and insightful discussions, this dissertation would not have been possible.

I would like deeply to express my sincere thanks and heartiest gratitude to **Dr. Haitham Mahmoud Yassin**, and **Dr. Tamer Mamdoh** for their great support and cooperation.

Finally, I would like to express all of my sincere and appreciated thanks for my parents, my sisters, and my friends for their sincere support.

Table of Contents

LIST OF SYMBOLS AND ABBREVIATIONS	v
List of Abbreviations	v
List of Symbols	viii
LIST OF FIGURES	xi
LIST OF TABLES	xiv
ABSTRACT	XV
CHAPTER ONE: INTRODUCTION	1
1.1 General Background	1
1.1.1 Overview on Various Technologies of Energy Storage Systems (ESS)	3
1.1.2 Applications of Energy Storage Systems in Electrical Networks with	
Renewable Generation	9
1.2 Problem Statement and Research Motivation	12
1.3 Thesis Objectives	13
1.4 Thesis Layout	14
CHAPTER TWO: LITERATURE REVIEW	17
2.1 Introduction	17
2.2 Optimum Operation of Grid Connected Wind Systems	17
2.2.1 Active Power Control	17
2.2.2 Reactive Power Control.	19
2.2.3 Low Voltage Ride-Through Capability	19
2.3 General Review on Wind Energy Conversion Systems Configurations	21
2.3.1 Fixed Speed Wind Energy Conversion Systems	22
2.3.2 Limited Variable Speed Wind Energy Conversion Systems	22
2.3.3 Variable Speed Wind Energy Conversion Systems	23
2.3.3.1 Doubly-Fed Induction Generator Based Wind System	23
2.3.3.2 Permanent Magnet Synchronous Generator Based Wind System	24
2.4 Flywheel Energy Storage Systems	25

2.4.1 Theory of Operation	25
2.4.2 Flywheel Energy Storage Systems Configuration	26
2.4.2.1 Flywheel Disk Design	27
2.4.2.2 Electrical Motor / Generator	28
2.4.2.3 Bi-Directional Power Electronic Converter	29
2.4.2.4 Bearings and Enclosure	29
2.5 Merits of Wind and Flywheel Energy Systems Integration	31
2.6 Brief Review on Both systems Integration from Literature	31
CHAPTER THREE: MODELING OF PMSG VARIABLE SPEED WIND SYSTEM	
INTEGRATED WITH FLYWHEEL SYSTEM	33
3.1 Introduction	33
3.2 Direct-Drive PMSG Wind System Model	33
3.2.1 Aerodynamic Model	34
3.2.2 Two Mass Drive Train Model	36
3.2.3 Permanent Magnet Synchronous Generator Model	37
3.2.4 Bi-directional Power Electronic Converter Model	39
3.2.4.1 Machine Side Converter Model	40
3.2.4.2 Grid Side Converter Model	42
3.2.4.3 DC LINK Model	42
3.3 Grid Model	42
3.4 Flywheel Energy Storage System Model	44
3.5 Proposed Topologies of System Integration	45
3.5.1 First Topology (STATCOM)	45
3.5.2 Second Topology (ON DC LINK)	46
CHAPTER FOUR: CONTROL PHILOSOPHY OF WECS-FESS INTEGRATED	
SYSTEM IN THE TWO PROPOSED TOPOLOGIES	49
4.1 Introduction	49
4.2 Field Oriented Control Basics	49
4.3 Coordinate Transformation and Space Vector Modulation	50
4.4 Maximum Power Point Tracking Strategies	56
4.5 Low Voltage Ride-Through Strategies	60

4.6 Control Structure of the system power electronic converters	64
4.6.1 Grid Side Converter Control	65
4.6.2 Machine Side Converter Control	66
4.7 Control Strategy of the Proposed First Topology "STATCOM"	70
4.8 Control Strategy of the Proposed Second Topology "ON DC LINK"	75
CHAPTER FIVE: DEVELOPED SIMULINK MODELS, SIMULATION SO AND RESULTS DISCUSSION	
5.1 Developed SIMULINK Model	79
5.2 SIMULINK Model Validation	83
5.3 Simulation Scenario	84
5.4 Results and Discussion	86
CHAPTER SIX: SUMMARY, CONCLUSIONS AND FUTURE WORK	95
6.1 Summary	95
6.2 Conclusions	95
6.3 Recommendations for Future Work	98
REFERENCES	99
APPENDIX A: DATA OF WIND AND FLYWHEEL ENERGY SYSTEMS MATLAB/SIMULINK MODEL	
APPENDIX B: DESIGN OF PI CONTROLLERS OF THE MACHINE ANI	D GRID SIDE
CONVERTERS	104

LIST OF SYMBOLS AND ABBREVIATIONS

• List of Abbreviations

APS Active Power Stabilization

BESS Battery Energy Storage System

CAES Compressed Air Energy Storage

CPC-S Conditioning Power Control System

DD-WECS Direct Drive Wind Energy Conversion System

DFIG Doubly Fed Induction Generator

DOD Depth of Discharge

DTC Direct Torque Control

DVR Dynamic Voltage Restorer

EEHC Egyptian Electrical Holding Company

ESS Energy Storage System

FACTS Flexible AC Transmission Systems

FBESS Flow Battery Energy Storage System

FC Frequency Control

FESS Flywheel Energy Storage System

FOC Field Oriented Control

FRT Fault Ride-Through

GSC Grid Side Converter

HCS Hill Climb Searching

IDFOC Indirect Field Oriented Control

IM Induction Machine

IPP Independent Power Producer

LVRT Low Voltage Ride-Through

MMC Modular Multilevel Converters

MPPT Maximum Power Point Tracking

MSC Machine Side Converter

MTPA Maximum Torque per Ampere

NREA New and Renewable Energy Authority

OTC Optimal Torque Control

PCC Point of Common Coupling

PHS Pumped Hydro Storage

PLL Phase Locked Loop

PMSG Permanent Magnet Synchronous Generator

PMSM Permanent Magnet Synchronous Machine

PPA Power Purchase Agreement

PSF Power Signal Feedback

PSO Power System Operator

PWM Pulse Width Modulation

RSC Rotor Side Converter

SCE Supreme Council for Energy

SCESS Super Capacitor Energy Storage System

SCIG Squirrel Cage Induction Generator

SDBR Series Dynamic Braking Resistor

SMES Super Magnetic Energy Storage System

SOC State of Charge

SPWM Sinusoidal Pulse Width Modulation

STATCOM Static Compensator

SVC Static VAR Compensator

SVM Space Vector Modulation

TCSR Thyristor Controlled Series Reactor

TSO Transmission System Operator

TSR Tip Speed Ratio

TSRC Tip Speed Ratio Control

UPF Unity Power Factor

VAR Volt Ampere Reactive

VC Voltage Control

VRM Variable Reluctance Machine

VSC Voltage Source Converter

VSWG Variable Speed Wind Generator

WPP Wind Power Plant

WRIG Wound Rotor Induction Generator

WWEA World Wind Energy Association

• List of Symbols

A: The area covered by rotor blades, m²

C: The DC link capacitor, F

 C_p : The power conversion coefficient

 D_f : The Damping Coefficient of the Flywheel Rotor, N.m/rad/sec

 D_r : The damping coefficient of the generator, Nm/(rad/sec)

 D_t : The damping coefficient of the wind turbine rotor, Nm/(rad/sec)

 E_C : The Energy Stored in capacitor, Joules

 E_f : The Energy Stored in flywheel, Joules

 E_L : The Energy Stored in inductor, Joules

 e_m : The Energy stored per unit mass, MJ / kg

 E_s : The Grid voltage amplitude, V

 e_v : The Energy stored per unit volume, MJ / m³

 i_{dg} : The d-axis component of the GSC current, A

 i_{ds} : The d-axis component of the stator current, A

: The q-axis component of the GSC current, A

 i_{as} : The q-axis component of the stator current, A

 J_f : The flywheel inertia, kg/m²

 J_r : The generator inertia, kg/m²

 J_t : The wind turbine inertia, kg/m²

k : The shaft stiffness, N/rad

K : The Flywheel Shape Factor

 L_{df} : The *d*-axis component of the filter inductance, H

 L_{ds} : The *d*-axis component of the stator inductance, H

 L_f : The filter inductance, H

 L_{af} : The q-axis component of the filter inductance, H

 L_{qs} : The q-axis component of the stator inductance, H

 L_s : The stator inductance, H

p : The pair poles

 P_g : The grid active power, W

 P_s : The PMSG active power, W

 P_t : The extracted mechanical power from the wind, W

 Q_g : The reactive power output to the grid, VAR

 Q_s : The PMSG reactive power, VAR

R: The radius of the wind turbine rotor, m

 R_f : The filter resistance, Ω

 R_s : The stator resistance, Ω

 T_e : The generator electromagnetic torque torque, Nm

 Te_{fw} : The electromagnetic torque of flywheel generator rotor, N.m

 T_t : The wind turbine torque, Nm

 V_{dc} : The dc-link voltage, V

 V_{dg} : The d-axis component of the GSC output voltage, V

 V_{ds} : The d-axis component of the terminal stator voltage, V

 V_{qg} : The q-axis component of the GSC output voltage, V

 V_{qs} : The q-axis component of the terminal stator voltage, V

 V_{wind} : The wind speed, m/s

 β : The pitch angle of the rotor blades, deg

 θ_g : The angular position of the grid voltage, rad

 θ_r : The rotational angle of the generator rotor, rad

 θt : The rotational angle of the wind turbine rotor, rad

 λ : The tip speed ratio

 ρ : The air density, Kg/m³

 ρ_f : The Flywheel Material Density, kg / m³

 σ : The Material Tensile Strength, MPa

 ψ_{ds} : The *d*-axis component of the stator flux linkage, Wb

 ψ_f : The permanent magnet flux, Wb

 ψ_{qs} : The q-axis component of the stator flux linkage, Wb

 ω : The angular frequency of the grid voltage, rad/sec

 ω_{fw} : The angular frequency of the grid voltage, rad/sec

 ω_r : The rotational angular speed of the generator, rad/sec

 ω_t : The angular speed of wind turbine rotor, rad/sec

LIST OF FIGURES

Figure 1.1: Total world installed wind capacity from 2012 to 2017 according to World Wind	
Energy Association (WWEA)	1
Figure 1.2: Wind Energy Growth in Egypt	2
Figure 1.3: Schematic diagram of CAES	4
Figure 1.4: Battery Energy Storage System configuration	5
Figure 1.5: Flow Battery Energy Storage System configuration	6
Figure 1.6: Superconducting Magnetic Energy Storage System (SMES)	7
Figure 1.7: Super Capacitor Energy Storage System (SCES)	7
Figure 1.8: Energy storage and Power capabilities of different energy storage systems	8
Figure 1.9: Energy storage systems classification according to their Objectives	
Figure 2.1: Typical Power Frequency Response Curve	
Figure 2.2: Typical Active Power Constraints (a) Absolute Power Constraint (b) Power Grade	
Constraint (c) Delta-Production Constraint	18
Figure 2.3: Typical requirements for Power Factor variation range with respect to (a) voltage	
variation (b) active power variation	19
Figure 2.4: Zones for FRT requirements according to the Egyptian Grid Code	20
Figure 2.5: Reactive output current during voltage disturbances according to the Egyptian gri	d
code	21
Figure 2.6: Schematic diagram of fixed speed wind turbine system	22
Figure 2.7: Schematic diagram of Limited variable speed wind turbine system	23
Figure 2.8: Schematic diagram of the Doubly-fed Induction Generator wind turbine system	24
Figure 2.9: Schematic diagram of Permanent magnet synchronous generator wind turbine sys	stem
	25
Figure 2.10: Schematic diagram of Flywheel Energy Storage System Components	26
Figure 2.11: Various shapes of flywheel disks used in flywheel energy storage systems	27
Figure 3.1: Subsystems of Direct-Drive PMSG Wind turbine system	
Figure 3.2: Wind Turbine Aero-dynamic model	35
Figure 3.3: Power conversion coefficient versus tip speed ratio $(Cp - \lambda)$ curve for different pi	tch
angle	35
Figure 3.4: Wind turbine power characteristic (Pt–ωt) curve with Maximum Power Point	
Tracking	
Figure 3.5: Two Mass model of the drive train	36
Figure 3.6: PMSG equivalent circuit in the dq reference frame	36
Figure 3.7: The Back-to-Back voltage source converter	39
Figure 3.8: Active and reactive power transfer between the generator and the MSC.	
(a)Equivalent Circuit (b) Phasor Diagram	40
Figure 3.9: Back-to-Back converter model	41