Molecular Detection of Human Herpes Viruses 1, 2, 3 and 6 in the Cerebrospinal Fluid of Patients with Central Nervous System Infections

Ehesis

Submitted for Partial Fulfillment of M.D Degree in Clinical Pathology

By

Yasmeen Mohammad Mahmood Ali Ibraheem

M.B.B.Ch.

M.Sc. of Clinical Pathology Faculty of Medicine - Ain Shams University

Under Supervision of

Professor/ Magda Salah El Dine Gabr

Professor of Clinical Pathology Faculty of Medicine - Ain Shams University

Professor / Nevine Nabil Kassem

Professor of Clinical Pathology Faculty of Medicine - Ain Shams University

Professor/ Samia Abdou Girgis

Professor of Clinical Pathology Faculty of Medicine - Ain Shams University

Doctor/ Rania Mohamed Abd-El Halim

Lecturer of Clinical Pathology
Faculty of Medicine - Ain Shams University

Faculty of Medicine

Ain Shams University

2018

سورة البقرة الآية: ٣٢

First and foremost I am thankful and grateful to **Allah;** the Most Merciful Who gives me power to accomplish this work.

No words can express my deepest appreciation and profound respect to **Prof. Magda Salah El Dine Gabr,** Professor of Clinical Pathology, Faculty of Medicine, Ain Shams University, for her enthusiasm and continuous support. It was great honor to work under his supervision.

Also, my profound gratitude to **Prof. Nevine Nabil Kassem,** Professor of Clinical Pathology, Faculty of Medicine, Ain Shams University, for her kind supervision and guidance. She has generously devoted much of her time and her effort for the planning and supervision of this study.

I would like also to thank **Prof. Samia Abdou Girgis,** Professor of Clinical Pathology, Faculty of Medicine, Ain Shams University Hospitals, for her support, help and enthusiasm during this work.

I would like also to thank **Dr. Rania Mohamed Abd- El Halim,** Lecturer of Clinical Pathology, Faculty of Medicine, Ain Shams University Hospitals, for her time, support and devotion during this work.

Last but not least, I dedicate this work to my family, whom without their sincere emotional support, pushing me forward this work would not have ever been completed.

Yasmeen Mohammad

Contents

Sı	Subjects Page	
•	List of Abbreviations	I
•	List of Tables	IV
•	List of Figures	VI
•	Introduction	1
•	Aim of the Word	5
•	Review of Literature	
•	Chapter (1): Viral Central Nervous System Infections	6
•	Chapter (2): Diagnosis of the Main Viral CNS Infections	26
•	Chapter (3): Treatment of Herpetic CNS Infections	46
•	Chapter (4): Prevention of Herpetic CNS Infections	60
•	Materials and Methods	67
•	Results	96
•	Discussion	120
•	Summary	132
•	Conclusion	136
•	Recommendations	137
•	References.	139
•	Master Sheet	153
•	Arabic Summary	-

List of Abbreviations

Abb.	Full term
ACIP	Advisory Committee on Immunization
	Practices
ADEM	Acute Disseminated Encephalomyelitis
AdV	Adenovirus
AIDS	Acquired Immune Deficiency Syndrome
AM	Aseptic meningitis
ANE	Acute Nectrotising Encephalopathy
СЕР	California Encephalitis Project
CMV	Cytomegalovirus
CNS	Central nervous system
СРЕ	Cytopathic effect
CSF	Cerebrospinal fluid
Ct	Cycle threshold
CVA	Cerebrovascular accident
DNA	Deoxyribonucleic acid
EEG	Electroencephalography
EIA	Enzyme immunoassay
EBV	Epstein-Barr virus
EV	Enterovirus
FA	FilmArray
FA/ME	FilmArray Meningitis/Encephalitis panel
FDA	Food and Drug Administration
gD2	Glycoprotein D2
HCMV	Human Cytomegalovirus

Tist of Abbreviations

Abb.	Full term
HEp-2	Human epithelial type 2 cell line
HHV	Human herpes virus
HHV-6	Human herpes virus 6
HIV	Human immunodeficiency virus
HPV	human papillomavirus
HSV	Herpes simplex virus
HSV-1	Herpes simplex virus 1
HSV-2	Herpes simplex virus 2
HSVE	Herpes simplex virus encephalitis
HZ	Herpes zoster
ICP	Intracranial pressure
ICU	Intensive care unit
IF	Immunofluorescence
IgG	Immunoglobulin G
IgM	Immunoglobulin M
IL	Interleukin
IM	Intramuscular
IV	Intravenous
IQR	Interquartile range
JEV	Japanese encephalitis virus
LCMV	Lymphocytic choriomeningitis virus
LP	Lumbar puncture
ME	Meningitis/encephalitis
miRNA	Micro Ribonucleic acid
MRI	Magnetic Resonance Imaging
MRC-5	Medical Research Council cell strain 5

Tist of Abbreviations

Abb.	Full term
MS	Multiple sclerosis
MV	Mumps virus
NAT	Nucleic acid test
NMDAR	Anti-N-methyl-D-Aspartate receptor
NS	Non-significant
PCR	Polymerase chain reaction
PCT	Procalcitonin
RNA	Ribonucleic acid
RNase	Ribonuclease
S	Significant
S. pneumoniae	Streptococcus pneumoniae
ТВ	Tuberculosis
TBE	Tick Borne Encephalitis
ТК	Thymidine kinase
TL	Temporal lobe
Tm	Melting temperature
TNF	Tumour necrosis factor
TOSV	Toscana virus
VZIG	Varicella-zoster immunoglobulin
VZV	Varicella-zoster virus
WBC	White blood cells
WNV	West Nile virus
ZN	Ziehl-Neelsen

List of Tables

No	Table	Page
1	Viral causes of meningitis	9
2	The epidemiology of viruses that commonly cause CNS infections	16
3	The complications of neurotropic viruses	24
4	A summary of typical CSF patterns in different CNS infections	29
5	Antiviral repertoire	51
6	HSV vaccines in clinical development	63
7	Contents of the QuantiTect® SYBR® Green PCR Kit	84
8	Components of reaction master mix for each 25 ul reaction	87
9	Three-step cycling protocol	88
10	Patients' demographic data	97
11	Clinical diagnosis of CNS infections	97
12	CSF analysis of clinical cases	98
13	Macroscopic and microscopic examination	99
14	PCR results of the 65 cases of CNS infections	101
15	Relation between clinical diagnosis and the positive samples for the four viruses	103
16	Relation between clinical diagnosis of the 26 positive samples for the four viruses in each age group	104
17	HSV-1 results as regard clinical and CSF data	106
18	HSV-1 results as regard age CSF analysis	107
19	HSV-2 results as regard clinical and CSF data	108
20	HSV-2 as regard CSF analysis	109
21	VZV results as regard clinical and CSF data	110
22	VZV as regard CSF analysis	111
23	HHV-6 results as regard clinical and CSF data	112
24	HHV-6 as regard CSF analysis	113

Tist of Tables

No	Table	Page
25	Collective results of the four viruses as regard clinical and CSF data	115
26	Collective results of the four viruses as regard CSF analysis	116
27	Comparison of the results of single HSV-1, HSV-2, VZV, HHV-6 infections, coinfections and negative results as regard clinical and CSF data	118
28	Comparison of the results of single HSV-1, HSV-2, VZV, HHV-6, coinfections and negative results, as regard CSF analysis	119

List of Figures

No	Figure	Page
1	Electron micrograph showing a single HSV-1 virion in cross-section	10
2	Algorithm demonstrating the diagnostic methods for viral CNS infections	27
3	Patterns of viral array	38
4	Diagnostic algorithm for suspected viral meningitis	45
5	Management of patients with suspected herpes simplex virus encephalitis (HSVE)	49
6	HSV antivirals - Current and future treatment options	57
7	Algorithm for the investigation and management of encephalitis	59
8	Results of syber Green real-time PCR in amplification plot	89
9	Results of melting curve, average Tm	90
10	The amplification plot crossing the cycle. threshold in a sample positive for HSV-1	91
11	The melting curve of a sample positive for HSV-1	91
12	The amplification plot crossing the cycle threshold in a sample positive for HSV-2	92
13	The melting curve of a sample positive for HSV-2	92
14	The amplification plot crossing the cycle threshold in a sample positive for VZV	93
15	The melting curve of a sample positive for VZV	93
16	The amplification plot crossing the cycle threshold in a sample positive for HHV-6	94
17	The melting curve of a sample positive for HHV-6	94
18	The amplification plot crossing the cycle threshold in a sample positive for a co-infection of VZV and HHV-6	95

Tist of Figures

No	Figure	Page
19	The melting curve of a sample positive for a co- infection of VZV and HHV-6	95
20	Showing the 26 positive PCR results of CNS infections	101
21	Relation between clinical diagnosis and the positive samples for the four viruses	103
22	Relation between clinical diagnosis and the positive samples for the four viruses in pediatric age group	105
23	Relation between clinical diagnosis and the positive samples for the four viruses in adult age group	105

Introduction

Infections of central nervous system (CNS), such as encephalitis, meningitis, and meningoencephalitis, remain a major global cause of morbidity and mortality (**Liu et al., 2015**). In the United States, each year, there are approximately 7.3 hospitalizations per 100,000 population due to encephalitis. However, the syndromes encephalitis and meningitis are not nationally notifiable infectious conditions and therefore the incidence of these diseases is not well documented (**Dupuis et al., 2011**).

Acute encephalitis is characterized by a triad of fever, headache, and altered mental status. Diffuse or focal neurologic signs such as cranial nerve dysfunction, hemiparesis, or seizures are commonly encountered. Capillary and endothelial inflammation of cortical vessels is a striking pathologic finding, occurring primarily in the gray matter or the gray—white junction. Aseptic meningitis refers to a disease with acute onset of symptoms and obvious signs of meningeal involvement, such as fever, headache, photophobia, stiff neck, irritability, nausea, vomiting, and rash. Negative bacterial culture of the cerebrospinal fluid (CSF) is suggestive of aseptic meningitis. Although the etiologic agent is not identified

for most cases, viral infection has been reported as a major cause (Kelly et al., 2013).

Herpes simplex virus-1 (HSV-1) and varicella-zoster virus (VZV) are the first and second most common causes of viral encephalitis, respectively. These viruses are associated with mortality and morbidity, especially when treatment is delayed (Pillet et al., 2015). HSV-1 is responsible for approximately 10% of all cases of encephalitis and is the most common cause of fatal sporadic viral encephalitis worldwide. The mortality rate of HSV encephalitis (HSVE) may be more than 70% if untreated, and more than 95% of untreated survivors will suffer lifelong sequelae. Varicella-zoster encephalitis affects 0.1 to 0.2% of persons with primary varicella. Before the use of varicella vaccine it was the most common cause of encephalitis in children in Europe. In a recent UK study, it remains second only to HSV among infectious causes of encephalitis (5%), and occurs mainly in the immunocompromised; 10% of whom were less than 20 years of age (Britton and Jones, 2013). Infection with HSV-2 may result in meningitis or meningoencephalitis, which may recur despite therapy. Neonatal infection with HSV-2 is especially devastating, and disseminated disease may occur in approximately 25% of cases (Binnicker et al., 2014). Human herpes virus-6 (HHV-6) has two distinct variants; HHV-6A and HHV-6B. Primary infection with HHV-6B in infants causes a non-specific febrile illness or most commonly exanthem subitum (roseola or 6th disease), and is associated with febrile convulsions. Up to 7% of children with encephalitis syndrome of otherwise unknown cause have HHV-6 DNA detectable in CSF with or without specific antibody responses (Britton and Jones, 2013).

A distinction must be made between acute viral encephalitis (VE) and autoimmune/post-infectious encephalitis, which can occur with a variable latent phase between acute illness and the onset of neurologic symptoms. This distinction is critical because the management and prognosis are often quite different. Evaluation of cerebrospinal fluid (CSF) following lumbar puncture is essential for accurately diagnosing disease, unless its collection is contraindicated because of high intracranial pressure (Kelly et al., 2013).

Due to similarities in the clinical presentations of the diseases caused by these herpesviruses and other pathogens, virological testing is often needed (Pillet et al., 2015). The detection of herpesviruses in CSF using real-time PCR is now recognized as the gold-standard approach for diagnosing herpes encephalitis and herpes meningitis

Introduction

(Binnicker et al., 2014). Studies suggest screening CSF cell count and protein values before performing HSV PCR in order to rationalize the use of this test. The only criteria proposed have been elevated CSF leukocyte counts (≥ 5 cells/mm³) and/or protein levels (> 50 mg/dl) (Roa et al., 2013).