

Different Corrosion Protection Technologies for Energy Recovery with Mini-Hydro Turbines in Brackish Water Desalination Plants

A Thesis Presented by Ahmed Helmy Abd El-Aziz Mostafa

B.Sc. (2007), M.Sc. (2014) (Zagazig University)

For the degree of Doctor of Philosophy of Science in Chemistry

Submitted to

Chemistry Department
Faculty of Science
Ain Shams University

Different Corrosion Protection Technologies for Energy Recovery with Mini-Hydro Turbines in Brackish Water Desalination Plants

A Thesis Presented by Ahmed Helmy Abd El-Aziz Mostafa

B.Sc. (2007), M.Sc. (2014) (Zagazig University)

For the degree of Doctor of Philosophy of Science in Chemistry

Under Supervision of

Prof. Dr. Eglal Raymond Souaya

Professor of Analytical & Inorganic Chemistry, Chemistry department, Faculty of Science, Ain Shams university

Dr. Tarek Samir Jamil

Associate professor, Department of Water Pollution, National Research Center

Prof. Dr. Ahmed Mahmoud Shaban

Professor and Vice President for Technical Affairs, Department of Water Pollution, National Research Center

Dr. Marwa Said Shalaby

Associate professor, Department of Chemical Engineering and Pilot Plant, National Research Center

Prof. Dr. Mary Ramsis Sedra

Professor of Analytical & Inorganic Chemistry, Chemistry department, Faculty of Science, Ain Shams university

Approval Sheet

Different Corrosion Protection Technologies for Energy Recovery with Mini-Hydro Turbines in Brackish Water Desalination Plants

By

Ahmed Helmy Abd El-Aziz Mostafa

Has been reviewed and approved by the following

Thesis Supervisors

Thesis Approved

Prof. Dr. Eglal Raymond Souaya

Professor of analytical & inorganic chemistry, Chemistry department, Faculty of Science, Ain Shams university

Dr. Tarek Samir Jamil

Associate professor, Department of Water Pollution, National Research Center

Prof. Dr. Ahmed Mahmoud Shaban

Professor and Vice President for Technical Affairs, Department of Water Pollution, National Research Center

Dr. Marwa Said Shalaby

Associate professor, Department of Chemical Engineering and Pilot Plant, National Research Center

Prof. Dr. Mary Ramsis Sedra

Professor of analytical & inorganic chemistry, Chemistry department, Faculty of Science, Ain Shams university

Approval

Prof. Dr. Ibrahim H. A. Badr

Head of Chemistry Department

Approval Sheet

Different Corrosion Protection Technologies for Energy Recovery with Mini-Hydro Turbines in Brackish Water Desalination Plants

By

Ahmed Helmy Abd El-Aziz Mostafa

Has been reviewed and approved by the following

Examiners Committee

Thesis Approved

Prof. Dr. Shawky Zaki Sabae

Professor of Microbiology of Inland Water and Aquaculture Branch, National Institute of Oceanography and Fisheries

Prof. Dr. Gehad Genidy Mohamed

Professor of Inorganic& Analytical Chemistry, Chemistry department, Faculty of Science, Cairo university

Prof. Dr. Eglal Raymond Souaya

Professor of analytical & inorganic chemistry, Chemistry department, Faculty of Science, Ain Shams university

Prof. Dr. Ahmed Mahmoud Shaban

Professor and Vice President for Technical Affairs, Department of Water Pollution, National Research Center

Approval
Prof. Dr. Ibrahim H. A. Badr
Head of Chemistry Department

بِينْ إِلَيْكُ إِلَيْكُ الْحُيْدُ الْمُعَيِّدُ الْمُعْتِدُ الْمُعْتَدُ الْمُعْتَدُ الْمُعْتَدِينُ الْمُعْتَدِينُ الْمُعْتِيدُ الْمُعْتَدِينُ الْمُعْتَدِينُ الْمُعْتَدِينُ الْمُعْتَدُ الْمُعْتَدِينُ الْمُعْتَدِينُ الْمُعْتَدِينُ الْمُعْتَدِينُ الْمُعِيدُ الْمُعْتَدِينُ الْمُعِينُ الْمُعْتَدِينُ الْمُعْتَدِينُ الْمُعْتَدِينُ الْمُعْتَدِينُ الْمُعْتَدِينُ الْمُعْتِقِلِ الْمُعْتِينِ الْمُعْتِقِينُ الْمُعِلِيلُ الْمُعْتِقِينِ الْمُعْتِقِينِ الْمُعْتِقِينِ الْمُعْتِيلُ الْمُعْتِقِينِ الْمُعْتِقِينِ الْمُعْتِقِينِ الْمُعْتِقِينِ الْمُعْتِقِينِ الْمُعْتِقِينِ الْمُعْتِقِينِ الْمُعْتِقِينِ الْمُعِينِ الْمُعْتِقِينِ الْمُعْتِقِينِ الْمُعْتِقِينِ الْمُعْتِقِينِ الْمُعْتِقِينِ الْمُعْتِقِينِ الْمُعْتِقِينِ الْمُعْتِقِينِ الْمُعِينِ الْمُعْتِقِينِ الْمُعْتِقِينِ الْمُعِينِ الْمُعْتِقِينِ الْمُعْتِقِينِ الْمُعْتِقِينِ الْمُعِينِ الْمُعْتِقِينِ الْمُعِلِينِ الْمُعْتِقِينِ الْمُعْتِقِينِ الْمُعْتِقِينِ الْمُعْتِقِينِ الْمُعِينِ الْمُعِينِ الْمُعِلِيلِ الْمُعِلِيلِ الْمُعِلِيلِ الْمُعِلِيلِ الْمُعِلِيلِ الْمُعِلِيلِ الْمُعْتِقِيلِ الْمُعِلِيلِ الْمُعِلِيلِ الْمُعْتِيلِ الْمُعِلِيلِ الْمُعِلِي الْمُعْتِقِيلِ الْمُعِلِي الْمُعِلِي الْمُعِلِي الْمُعِلِي الْمُعِلِي الْمُعِلِي الْمُعِلِيلِ الْمُعِلِي الْمُعِلِي الْمُعِلِي الْمُعِلِيلِ الْمُعِلِي الْمُعِلِي الْمُعِلِي الْمُعِيلِي الْمُعِلِي الْمُعِي

قَالُوا سُبْحَانَكَ
لا عِلْمَ لَنَا إلا مَا عَلَّمْتَنَا
إِنَّكَ أَنْتَ الْعَلِيمُ الْحَكِيمُ

صدق الله العظيم سورة البقرة :٣٢

Dedicated to

Allah, All MEMBERS OF MY

FAMILY, FRIENDS AND FOR MY

DEAR FRIEND

DR. Tarek Samir Jamil

All of those who Love me

Ahmed Helmy Abd El-Aziz

First, I would like to thank *ALLAH*, for making all this work possible and for granting me with the best teachers.

I have the pleasure to express my feelings toward those who gave me help and support by their efforts at the time during which I was in need for help and support.

I would to express deep thanks to my supervisor Professor Dr. *Eglal R. Souaya*, Chemistry Department, Faculty of Science, Ain Shams University, for supervision, interest and her advice.

No words can express my feeling, respect, my sincere appreciation and thanks to Dr. *Tarek S. Jamil*, Associate Professor, Department of Water Pollution, National Research Center, for his efficient supervision of this work. His tireless encouragement and generation of novel ideas contributed most to the completion of this project.

I also would like to acknowledge Professor Dr. *Ahmed M. Shaban*, Professor, Department of Water Pollution, National Research Center, for his priceless suggestions and recommendations in preparing the thesis.

I am deeply grateful and express my Deep thanks to Dr. *Marwa S. Shalaby*, Associate Professor at chemical engineering and pilot plant department, National Research Center, for her great help, continuous assistance during this work and her advice.

Thanks are also extended to my supervisor Professor Dr. *Mary R. Sedra*, Chemistry Department, Faculty of Science, Ain Shams University, for supervision, interest and her understanding cooperation.

I am especially thankful to Dr. *Nabil A. El-Manakhly*, Professor of Physical Chemistry, Physical Chemistry Department, National Research Center, for his scientific guidance.

Last, but not least, thanks to staff members of Chemistry Department, Faculty of Science, Ain Shams University, for their valuable advice and help.

Ahmed Helmy Abd El-Aziz

	Page
I. INTRODUCTION	1
2. REVIEW OF LITERATURE	4
2.1. Corrosion	4
2.2. Corrosion protection	9
2.2.1. Corrosion Protection by Coatings	9
2.2.1.1 Metallic coatings	11
2.3. Zeolites	11
2.3.1 Zeolite coatings	12
2.3.2 Synthesis of zeolites on various structures	13
2.3.3 Zeolite polymers coating	16
2.4. Polyaniline	16
2.4.1. Zeolite polyaniline	19
2.4.2. Nylon 6	20
2.5. Energy requirements	22
2.5.1. Energy Recovery Devices (ERD)	24
3. MATERIALS AND METHODS	27
3.1. Preparation of stock solution	27
3.1.1. Hydrochloric acid solution	27
3.1.2. Sodium carbonate solution	27
3.1.3. Ammonium per sulfate solution	28
3.1.4. Sodium hydroxide (0.5M) solution.	28
3.2. Sample preparation	28
3.3. Synthesis of Polyaniline/ Zeolite X composites	32
3.3.1. Preparation of (EB form)	32
3.3.2. Preparation of coating solution	33
3.4. Instrumentation	33
3.4.1. FT-IR spectra analysis	33
3.4.2. UV-visible spectra analysis	33
3.4.3. Scanning Electron Microscope (SEM) analysis	33
3.4.4. XRD analysis	34
3.4.5. Transmitting Electron Microscope (TEM) analysis	34
3.4.6. Energy Dispersive X-ray (EDX) analysis	34
3.4.7. Thermal investigation	35
3.5. Corrosion Studies	35
3.5.1. Weight loss method	35
3.5.2. Electrochemical measurements	35
3.5.3. Electrochemical Impedance Spectroscopy	36

4. RESULTS AND DISCUSSION	38
4.1. Synthesis of polyaniline (PANI)	38
4.1.1 Chemical Synthesis (Oxidative polymerization)	38
4.1.2 Polymerization mechanism of PANI	40
4.2. Effect of Time of Reaction on the yield of composites	44
4.3. Characterization studies	48
4.3.1. Infrared spectra	48
4.3.2. UV–visible spectra	52
4.3.3. X-ray diffraction analysis (XRD)	57
4.3.4. Scanning Electron Microscope (SEM) analysis	61
4.3.5. Transmittance Electron Microscope (TEM)	66
analysis	
4.3.6. Thermal Analysis (TGA)	70
4.3.7. Differential scanning calorimetry (DSC) analysis	75
4.3.8. Energy dispersive X-ray spectroscopy (EDX)	80
analysis	
4.4. Corrosion studies	84
4.4.1. Weight loss measurements	84
4.4.2. Potentiodynamic polarization studies	88
4.4.2.1. Stainless steel 304	89
4.4.2.2. Stainless steel 316	92
4.4.2.3. Aluminum	94
4.4.2.4. Carbon steel	96
4.5.3. Electrochemical impedance spectroscopy	98
4.5.3.1. Stainless steel 304	99
4.5.3.2. Stainless steel 316	110
4.5.3.3. Carbon steel	116
4.5.3.4. Aluminum	122
5. SUMMARY AND CONCLUSION	128
REFERENCES	136

List of Tables

Title of Table	Page
Table 1: Composition of carbon, SS304 and SS 316.	29
Table 2: Chemical composition of the formation water.	30
Table 3: Test parameters for corrosion experiments.	31
Table 4: The relation between time of reaction and the	47
composites yield.	
Table 5: Infrared frequencies (cm ⁻¹) and assignments for (A)	50
PANI, (B) Zeolite X, (C) PZ1, (D) PZ2, (E)	
PZ3, (F) PZ4 composites.	
Table 6: UV-Vis. Spectra of (A) PANI, (B) PZ1, (C) PZ2,	53
(D) PZ3, (E) PZ4 composites	
Table 7: Corrosion rate of the tested samples and inhibition	85
efficiency for the bare and coated samples after	
72h immersion in formation water obtained from	
weight loss measurements at 25°c.	
Table 8: Corrosion potential (E_{corr}) , corrosion current density	91
(i_{corr}) calculated by Tafel extrapolation method.	
Table 9: Electrochemical impedance parameters for 304 SS,	105
316 SS, Carbon steel in formation water for	
uncoated (bare) and coated samples.	
_	

List of Figures

Title of Figure	Page
Fig. 1: Zeolite structure, pore size and molecular diameter of	12
hydrocarbons	
Fig. 2: Relation between reaction time and the yield of	46
Polyaniline/Zeolite X composites.	
Fig. 3: Infrared spectra of (A) Polyaniline, (B) Zeolite X, (C)	51
PZ1, (D) PZ2, (E) PZ3 and (F) PZ4 composites.	
Fig. 4: UV-visible spectra of Polyaniline	54
Fig. 5: UV-visible spectra of Zeolite X	54
Fig. 6: UV-visible spectra of PZ1 composite	55
Fig. 7: UV-visible spectra of PZ2 composite	55
Fig. 8: UV-visible spectra of PZ3 composite	56
Fig. 9: UV-visible spectra of PZ4 composite	56
Fig. 10: XRD pattern of Polyaniline	58
Fig. 11: XRD pattern of Zeolite X	58
Fig. 12: XRD pattern of P/Z1 composite	59
Fig. 13: XRD pattern of P/Z2 composite	59
Fig. 14: XRD pattern of P/Z3 composite	60
Fig. 15: XRD pattern of P/Z4 composite	60
Fig. 16: SEM image of pure Zeolite X composite.	63
Fig. 17: SEM image of pure Polyaniline.	63
Fig. 18. SEM image of P/Z1 composite.	64
Fig. 19. SEM image of P/Z2 composite.	64
Fig. 20. SEM image of P/Z3 composite.	65
Fig. 21. SEM image of P/Z4 composite	65
Fig. 22: TEM image of Zeolite X.	67
Fig. 23: TEM image of polyaniline.	67
Fig. 24: TEM image of P/Z1 composite.	68
Fig. 25: TEM image of P/Z2 composite.	68
Fig. 26: TEM image of P/Z3 composite.	69
Fig. 27: TEM image of P/Z4 composite	69
Fig. 28: TGA of Zeolite X	72
Fig. 29: TGA of Polyaniline	72
Fig. 30: TGA of PZ1 composite.	73
Fig. 31: TGA of PZ2 composite	73
Fig. 32: TGA of PZ3 composite	74
Fig. 33: TGA of PZ4 composite	74
Fig. 34: DSC of Zeolite X	77
Fig. 35: DSC of Polyaniline	77
Fig. 36: DSC of PZ1 composite	78

Fig.	37:	DSC of PZ2 composite.	78
Fig.	38:	DSC of PZ3 composite.	79
Fig.	39:	DSC of PZ4 composite	79
Fig.	40 :	EDX image of PANI	81
Fig.	41:	EDX image of Zeolite X.	81
Fig.	42 :	EDX image of PZ1 composite.	82
Fig.	43:	EDX image of PZ2 composite.	82
Fig.	44 :	EDX image of PZ3 composite.	83
Fig.	45 :	EDX image of PZ4 composite.	83
Fig.	46:	Weight loss v. Time diagram of carbon steel	86
Fig.	47:	Weight loss v. Time diagram of Al	86
Fig.	48:	Weight loss v. Time diagram of SS304	87
Fig.	49:	Weight loss v. Time diagram of SS316	87
Fig.	50:	Tafel polarization curve of bare SS304	90
_		Tafel polarization curve of Coated SS304	90
Fig.	52:	Tafel cyclic polarization curve of bare SS316	93
_		Tafel cyclic polarization curve of coated SS316.	93
Fig.	54 :	Tafel cyclic polarization curve of bare Aluminum	95
		metal.	
Fig.	55	Tafel cyclic polarization curve of coated Aluminum	95
		metal	
_		Tafel cyclic polarization curve of bare Carbon steel.	97
_		Tafel cyclic polarization curve of coated Carbon steel	97
Fig.	58:	Electrochemical equivalent circuit used to fit the	101
		impedance spectra	
		Nyquist plots of bare SS304.	106
_		Fitted Nyquist plots of bare SS304.	106
_		Nyquist plots of coated SS304.	107
_		Fitted Nyquist plots of coated SS304.	107
		Bode modules plots of bare SS304	108
_		Bode modules plots of coated SS304	108
_		Frequency- Phase Bode plots of bare SS304	109
_		Frequency- Phase Bode plots of coated SS304	109
_		Nyquist plots of bare SS316.	112
_		Fitted Nyquist plots of bare SS316.	112
_		Nyquist plots of coated SS316.	113
_		Fitted Nyquist plots of coated SS316.	113
_		Bode modules plots of bare SS316	114
_		Bode modules plots of coated SS316	114
_		Frequency- Phase Bode plots of bare SS316	115
_		Frequency- Phase Bode plots of coated SS316	115
Fig.	75:	Nyquist plots of bare Carbon steel.	118

Fig. 76: Fitted Nyquist plots of bare Carbon steel.	118
Fig. 77: Nyquist plots of coated Carbon steel	119
Fig. 78: Fitted Nyquist plots of coated Carbon steel	119
Fig. 79: Bode modules plots of bare Carbon steel	120
Fig. 80: Bode modules plots of coated Carbon steel	120
Fig. 81: Frequency- Phase Bode plots of bare Carbon steel	121
Fig. 82: Frequency- Phase Bode plots of coated Carbon steel	121
Fig. 83: Nyquist plots of bare Aluminum.	124
Fig. 84: Fitted Nyquist plots of bare Aluminum.	124
Fig. 85: Nyquist plots of coated Aluminum.	125
Fig. 86: Fitted Nyquist plots of coated Aluminum.	125
Fig. 87: Bode modules plots of bare Aluminum	126
Fig. 88: Bode modules plots of coated Aluminum	126
Fig. 89: Frequency- Phase Bode plots of bare Aluminum	127
Fig. 90: Frequency- Phase Bode plots of coated Aluminum	127

List of Schemes

Title of Scheme	Page
Scheme 1: Types of corrosion in desalination plants	5
Scheme 2: Polyaniline –Emeraldine salt form	17
Scheme 3: Caprolactam structure	21
Scheme 4: Nylon 6 (above) has a structure similar to Nylon	
6, 6 (below)	
Scheme 5: Homopolymerization of Polyaniline	39
Scheme 6: Formation of aniline radical cation	40
Scheme 7: Resonance forms of aniline radical cation	41
Scheme 8: Dimer formation	42
Scheme 9: Formation of the radical cation dimer	43
Scheme 10: A way of polymer synthesis	43

List of Abbreviations

 2θ 2 Theta

APS Ammonium peroxydisulfate

Al-ZSM-5 Aluminum Zeolite Socony Mobil- Five

BEA Zeolites Beta polymorph A Zeolite

cm⁻¹ Wavenumber
CP Cathodic Protection
DO Dissolved Oxygen

DTG Differential thermogravimetric analysis
DSC Differential Scanning Calorimetry analysis

ERD Energy recovery devices

IR Infrared

LCC Life Cycle Cost

LTA Zeolite Framework Type Linde Type A LTN Zeolite Framework Type Linde Type N

MCM-41 (Mobil Composition of Matter No. 41) is a

mesoporous material with a hierarchical structure from a family of silicate and alumosilicate solids that were first developed by researchers at Mobil Oil Corporation and that can be used as catalysts

or catalyst supports

MED Multiple-effect distillation

MFI zeolite Mordenite Framework Inverted (zeolites)

MSF Multi-stage flash distillation

PANI Polyaniline ppm Part per million

PX Pressure Ex-changer device RO reverse osmosis process

SAPO-5 zeolites Silico alumino phosphate Five Zeolites

SEM Scanning Electron Microscope

Sil-1 Zeolites Silicalite-1 Zeolites

SW Sea water

SWRO Seawater reverse osmosis TDS Total dissolved solids

TEM Transmittance Electron Microscope

TGA Thermogravimetric analysis
TS-1 Zeolites Titanium silicalite-1 Zeolites

UV-Vis. Ultraviolet-Visible

XRD X-ray diffraction analysis

Type of synthetic Zeolite called Faujasite, depending on the silica-to-alumina ratio of their