AIN SHAMS UNIVERSITY FACULTY OF SCIENCE CHEMISTRY DEPARTMENT

STUDY ON THE REMOVAL OF SOME RADIOISOTOPES FROM LIQUID WASTES BY NANO-MATERIALS

A thesis Submitted By

Ihab Samir Abd El Fattah

M. Sc. (Inorganic Chemistry)

To

Chemistry Department
Faculty of Science
AIN SHAMS University

In Partial Fulfillment of the Ph.D.Degree

(Chemistry)

Supervised By

Prof. Dr.

Ebtissam Ahmed Saad

Prof. of Inorganic and Radiation
Chemistry
Chemistry Dept. Faculty of Science
Ain Shams University

Assoc. prof.

Waleed Mohamed Abdellah

Assoc. Prof. of Radio-Chemistry
Radiation Protection Dept.
Nuclear and Radiological Regulatory
Authority

Prof. Dr.

Hanan Mohamed Diab

Prof. of Radiation Physics
Radiation Protection Dept.
Nuclear and Radiological Regulatory
Authority

Dr.

Amir Ezzat Abo El Hasan

Lecturer of Inorganic Chemistry
Chemistry Dept. Faculty of Science
Ain Shams University

Acknowledgement

First, I'm deeply thankful to **ALLAH**, by the grace of whom this work was completed.

I am greatly gratitude to **Prof. Dr. Ebtissam Ahmed Saad** *Prof. of Inorganic and Radiochemistry, Chemistry Department, Faculty of Science, Ain Shams University*, for supervising, useful advices valuable guidance and illuminating discussion.

I wish also to express my sincere thanks to **Prof. Dr. Hanan Mohamed Diab** *Prof. of Radiation physics, Radiation Protection Department, Egyptian Nuclear and Radiological Regulatory authority,* for supervising the work, following the progress of the work and her effort to help me through the development of this work.

I'd like to express my deep thanks to **Dr. Walied Mohamed Abdellah** Assoc. Prof. of Radiochemistry, Radiation Protection Department, Egyptian Nuclear and Radiological Regulatory authority, for his useful advices, valuable guidance, encouragement, his shared time and his wide knowledge in an effort to help me reach this point and reach the target from the work.

I'd like to express my great thanks to **Dr. Amir Ezzat Abo El Hasan**

Lecturer of Inorganic Chemistry, Chemistry Department, Faculty of Science, Ain Shams University, for his useful advices valuable guidance, encouragement, cooperation and help during the work.

Thanks to all staff members of *Central Lab. For Environmental Radiation Measurements Intercomparison and Training*, and all staff members of *Radiation Protection Department, Egyptian Nuclear and Radiological Regulatory authority*, for their cooperation and help. Finally, I'd like to thank my family and my friends for supporting me forever and giving me the strength to finish this work.

God bless them all

Ihab Samir Abdel Fattah

Supervised Committee

Title: STUDY ON THE REMOVAL OF SOME RADIOISOTOPES FROM LIQUID WASTES BY NANO-MATERIALS

Researcher Name: Ihab Samir Abd El Fattah

	Name	Job	Signature
	Prof. Dr.	Professor of Inorganic and Radiation Chemistry,	
1	Ebtissam Ahmed Saad	Chemistry Dept. Faculty of Science,	
		Ain Shams University.	
	D £ D	Professor of Radiation Physics	
	Prof. Dr.	Radiation Protection Dept.	
2	Hanan Mohamed Diab	Nuclear and Radiological Regulatory	
		Authority	
	A D 6	Assoc. Prof. of Radio-Chemistry	
3	Assoc. Prof.	Radiation Protection Dept.	
3	Waleed Mohamed Abdellah	Nuclear and Radiological Regulatory Authority	
	Dr.	Lecturer of Inorganic Chemistry	
2	Amir Ezzat Abo El Hasan	Chemistry Dept. Faculty of Science Ain Shams University	

Prof. Dr. Ebrahim Housiny Ali

Head of Chemistry Department

Committee of discussion

Title: STUDY ON THE REMOVAL OF SOME RADIOISOTOPES FROM LIQUID WASTES BY NANO-MATERIALS

Researcher name: Ihab Samir Abd El Fattah

	Name	Job	Signature
	Prof. Dr.	Professor of Inorganic and Radiation Chemistry,	
1	Ebtissam Ahmed Saad	Chemistry Dept. Faculty of Science,	
		Ain Shams University.	
		Professor of Radiation	
	Prof. Dr.	physics	
2		Radiation Protection Dept.	
	Hanan Mohamed Diab	Nuclear and Radiological	
		Regulatory Authority	
3	Prof. Dr. Jacqueline A. Daoud	Professor of Radiation and Inorganic Chemistry, Hot Laboratories Centre, Atomic Energy Authority,	
4	Prof. Dr. Medhat Mohamed Hassan	Professor of Radiation Chemistry, National Center of Radiation Research and Technology	

Prof. Dr. Ibrahim H.A.Badr

Head of Chemistry Department

Approval sheet

STUDY ON THE REMOVAL OF SOME RADIOISOTOPES FROM LIQUID WASTES BY NANO-MATERIALS

By

Ihab Samir Abd El Fattah

M.Sc. (Inorganic Chemistry)

Thesis Advisors	Thesis Approved
Prof. Dr. Ebtissam Ahmed Saad Professor of Inorganic and Radiation Chemistry,	
Chemistry Department, Faculty of Science, Ain Shams University.	
Prof. Dr. Hanan Mohamed Diab	
Professor of Radiation Physics Radiation Protection Dept. Egyptian Nuclear and Radiological Regulatory Authority	
Assoc. Prof. Waleed Mohamed Abdellah Assoc. Prof. of Radio-Chemistry Radiation Protection Dept. Egyptian Nuclear and Radiological Regulatory Authority	
Dr. Amir Ezzat Abo El Hasan Lecturer of Inorganic Chemistry Chemistry Dept. Faculty of Science Ain shams University	

Prof. Dr. Ibrahim H.A.Badr

Head of Chemistry Department

List of Figures

NO.	Subject	Pages
Figure 1	Flowchart for the synthesis of Al ₂ O ₃ nanoparticles.	56
Figure 2	Flowchart for preparation of MgFe ₂ O ₄ , NiFe ₂ O ₄ and CoFe ₂ O ₄	
	nanoparticles.	58
Figure 3	Flowchart for preparation of (MgHCFC), (NiHCFC) and	
	(CoHCFC) nanocomposites.	60
Figure 4	X-ray diffraction (XRD)	63
Figure 5	Fourier-transform infrared spectrometer (FT-IR)	64
Figure 6	Field emission scanning electron microscope (FE-SEM)	65
Figure 7	UV-vis spectrophotometer	66
Figure 8	Inductively coupled plasma optical emission spectrometer	
	(ICP-OES)	67
Figure 9	Liquid scintillation counter	68
Figure10	XRD patterns of Al ₂ O ₃ samples calcined at 500°C prepared	
	using urea (A), oxalic acid (B) and citric acid (C) as a fuel.	71
Figure11	XRD patterns of Al ₂ O ₃ samples calcined at 600°C prepared	
	using urea (A), oxalic acid (B) and citric acid (C) as a fuel.	72
Figure12	XRD patterns of Al ₂ O ₃ samples calcined at 800°C prepared	
	using urea (A), oxalic acid (B) and citric acid (C) as a fuel.	73
Figure 13	XRD patterns of Al ₂ O ₃ samples calcined at 1000°C prepared	
	using urea (A), oxalic acid (B) and citric acid (C) as a fuel.	74

Figure 14	FT-IR spectra of Al ₂ O ₃ products calcined at 800 °C prepared	
	using urea (A), oxalic acid (B) and citric acid (C) as a fuel.	76
Figure 15	FE-SEM images of Al ₂ O ₃ products calcined at 800 °C prepared	
	using urea (a), oxalic acid (b) and citric acid (c) as a fuel.	78
Figure 16	XRD patterns of MgFe ₂ O ₄ samples calcined at 600 °C prepared	
	using urea (a), oxalic acid (b) and citric acid (c) as a fuel.	
		80
Figure 17	XRD patterns of MgFe ₂ O ₄ samples calcined at 800 °C prepared	
	using urea (A), oxalic acid (B) and citric acid (C) as a fuel.	
		81
Figure 18	FT-IR spectra of MgFe ₂ O ₄ products calcined at 800 °C	
	prepared using urea (A), oxalic acid (B) and citric acid (C) as a	
	fuel.	82
Figure 19	FE-SEM image of MgFe ₂ O ₄ products calcined at 800 °C	
	prepared using urea (a), oxalic acid (b) and citric acid (c) as a	
	fuel.	84
Figure 20	XRD patterns of NiFe ₂ O ₄ samples calcined at 600 °C prepared	
	using urea (a), oxalic acid (b) and, citric acid (c) as a fuel.	87
Figure 21	XRD patterns of NiFe ₂ O ₄ samples calcined at 800 °C prepared	
	using urea (A), oxalic acid (B) and citric acid (C) as a fuel.	88
Figure 22	FT-IR spectra of NiFe ₂ O ₄ products calcined at 800 °C prepared	
	using urea (A), oxalic acid (B) and citric acid (C) as a fuel.	90
Figure 23	FE-SEM image of NiFe ₂ O ₄ products calcined at 800 °C	
	prepared using urea (a), oxalic acid (b) and citric acid (c) as a	92

	fuel.	
Figure 24	XRD patterns of CoFe ₂ O ₄ samples calcined at 600 °C prepared	
	using urea (a), oxalic acid (b) and citric acid (c) as a fuel.	94
Figure 25	XRD patterns of CoFe ₂ O ₄ samples calcined at 800 °C prepared	
	using urea (A), oxalic acid (B) and citric acid (C) as a fuel.	95
Figure 26	FT-IR spectra of CoFe ₂ O ₄ products calcined at 800 °C prepared	
	using urea (A), oxalic acid (B) and citric acid (C) as a fuel.	97
Figure 27	FE-SEM image of CoFe ₂ O ₄ products calcined at 800 °C	
	prepared using urea (a), oxalic acid (b) and citric acid (c) as a	
	fuel.	99
Figure 28	XRD patterns of (MgHCFC) (A), (NiHCFC) (B) and	
	(CoHCFC) (C) nanocomposites.	101
Figure 29	FT-IR spectra of (MgHCFC) (A), (NiHCFC) (B) and	
	(CoHCFC) (C) nanocomposites.	103
Figure 30	FE-SEM images of (MgHCFC) (a), (NiHCFC) (b) and	
	(CoHCFC) (c) nanocomposites.	105
Figure 31	Effect of pH on Cr(VI) removal percent using γ-Al ₂ O ₃	
	nanoadsorbent.	107
Figure 32	Effect of contact time on Cr(VI) removal percent using γ-Al ₂ O ₃	
	nanoadsorbent.	108
Figure 33	Effect of temperature on Cr(VI) removal percent using γ-Al ₂ O ₃	
	nanoadsorbent.	109
Figure 34	Effect of chromium concentration on Cr(VI) removal percent	110

	using γ-Al ₂ O ₃ nanoadsorbent.	
Figure 35	Langmuir isotherm for adsorption of Cr(VI) on γ-Al ₂ O ₃	
	nanoadsorbent.	112
Figure 36	Freundlish isotherm for adsorption of Cr(VI) on γ-Al ₂ O ₃	
	nanoadsorbent.	113
Figure 37	Pseudo-first-order plots for adsorption of Cr(VI) on γ-Al ₂ O ₃	
	nanoadsorbent.	115
Figure 38	Pseudo-second-order plots for adsorption of Cr(VI) on γ-Al ₂ O ₃	
	nanoadsorbent.	115
Figure 39	Van't Hoff plot for adsorption of Cr(VI) on γ-Al ₂ O ₃	
	nanoadsorbent.	117
Figure 40	Effect of pH on Cr(VI) and ⁹⁹ TcO ₄ removal percent using	
	MgFe ₂ O ₄ nanoadsorbent.	
		119
Figure 41	Effect of contact time on Cr(VI) (a) and ⁹⁹ TcO ₄ (b) removal	
	percent using MgFe ₂ O ₄ nanoadsorbent.	120
Figure 42	Effect of temperature on Cr(VI) (a) and ⁹⁹ TcO ₄ (b) removal	
	percent using MgFe ₂ O ₄ nanoadsorbent.	122
Figure 43	Effect of Cr(VI) (a) and ⁹⁹ TcO ₄ (b) concentration on the	
	adsorption capacity of MgFe ₂ O ₄ nanoadsorbent .	123
Figure 44	Langmuir isotherm for adsorption of Cr(VI) (a) and ⁹⁹ TcO ₄ (b)	
	on MgFe ₂ O ₄ nanoadsorbent.	125

Figure 45	Freundlich isotherm for adsorption of Cr(VI) (c) and ⁹⁹ TcO ₄	
	(d) on MgFe ₂ O ₄ nanoadsorbent.	126
Figure 46	Pseudo-first-order plots for adsorption of Cr(VI) (a) and	
	⁹⁹ TcO ₄ ⁻ (b) on MgFe ₂ O ₄ nanoadsorbent.	128
Figure 47	Pseudo-second-order plots for adsorption of Cr(VI) (a) and	
	⁹⁹ TcO ₄ (b) on MgFe ₂ O ₄ nanoadsorbent.	129
Figure 48	Van't Hoff plot for adsorption of Cr(VI) (a) and ⁹⁹ TcO ₄ (b) on	
	MgFe ₂ O ₄ nanoadsorbent.	132
Figure 49	Effect of pH on Cr(VI) and ⁹⁹ TcO ₄ removal percent using	
	NiFe ₂ O ₄ nanoadsorbent.	134
Figure 50	Effect of contact time on Cr(VI) (a) and ⁹⁹ TcO ₄ (b) removal	
	percent using NiFe ₂ O ₄ nanoadsorbent.	135
Figure 51	Effect of temperature on Cr(VI) (a) and ⁹⁹ TcO ₄ (b) removal	
	percent using NiFe ₂ O ₄ nanoadsorbent.	137
Figure 52	Effect of Cr(VI) (a) and ⁹⁹ TcO ₄ (b) concentration on the	
	adsorption capacity of NiFe ₂ O ₄ nanoadsorbent.	139
Figure 53	Langmuir isotherm for adsorption of Cr(VI) (a) and ⁹⁹ TcO ₄ (b)	
	on NiFe ₂ O ₄ nanoadsorbent.	141
Figure 54	Freundlich isotherm for adsorption of Cr(VI) (c) and ⁹⁹ TcO ₄	
	(d) on NiFe ₂ O ₄ nanoadsorbent.	142
Figure 55	Pseudo-first-order plots for adsorption of Cr(VI) (a) and	
	⁹⁹ TcO ₄ ⁻ (b) on NiFe ₂ O ₄ nanoadsorbent.	144
Figure 56	Pseudo-second-order plots for adsorption of Cr(VI) (c) and	
	⁹⁹ TcO ₄ (d) on NiFe ₂ O ₄ nanoadsorbent.	
		145
Figure 57	Van't Hoff plot for adsorption of Cr(VI) (a) and ⁹⁹ TcO ₄ (b) on	148

	NiFe ₂ O ₄ nanoadsorbent.	
Figure 58	Effect of pH on Cr(VI) and ⁹⁹ TcO ₄ removal percent using	
	CoFe ₂ O ₄ nanoadsorbent.	150
Figure 59	Effect of contact time on Cr(VI) (a) and ⁹⁹ TcO ₄ (b) removal	
	percent using CoFe ₂ O ₄ nanoadsorbent.	152
Figure 60	Effect of temperature on Cr(VI) (a) and ⁹⁹ TcO ₄ (b) removal	
	percent using CoFe ₂ O ₄ nanoadsorbent.	154
Figure 61	Effect of Cr(VI) (a) and ⁹⁹ TcO ₄ (b) concentration on the	
	adsorption capacity of CoFe ₂ O ₄ nanoadsorbent.	156
Figure 62	Langmuir isotherm for adsorption of Cr(VI)(a) and ⁹⁹ TcO ₄	
	(b)on CoFe ₂ O ₄ nanoadsorbent.	158
Figure 63	Freundlish isotherm for adsorption of Cr(VI) (c) and ⁹⁹ TcO ₄ (d)	
	on CoFe ₂ O ₄ nanoadsorbent.	159
Figure 64	Pseudo-first-order plots for adsorption of Cr(VI) (a) and	
	⁹⁹ TcO ₄ ⁻ (b) on CoFe ₂ O ₄ nanoadsorbent.	161
Figure 65	Pseudo-second-order plots for adsorption of Cr(VI) (c) and	
	⁹⁹ TcO ₄ (d) on CoFe ₂ O ₄ nanoadsorbent.	162
Figure 66	Van't Hoff plot for adsorption of Cr(VI) (a) and ⁹⁹ TcO ₄ (b) on	
	CoFe ₂ O ₄ nanoadsorbent.	164
Figure 67	Effect of pH on Cs (I) removal percent using MgHCFC	
	nanoadsorbent.	166
Figure 68	Effect of contact time on Cs (I) removal percent using	
	MgHCFC nanoadsorbent.	167
Figure 69	Effect of temperature on Cs (I) removal percent using	168
0010 07	percent doming	

	MgHCFC nanoadsorbent.	
Figure 70	Effect of Cs (I) concentration on the adsorption capacity of	
	MgHCFC nanoadsorbent.	169
Figure 71	Langmuir isotherm (a) and Freundlich isotherm (b) for	
	adsorption of Cs (I) on MgHCFC nanoadsorbent.	171
Figure 72	Pseudo-first-order (a) and Pseudo-second-order (b) models for adsorption of Cs (I) on MgHCFC nanoadsorbent.	173
Figure 73	Van't Hoff plot for adsorption of Cs (I) on MgHCFC nanoadsorbent.	175
Figure 74	Effect of pH on Cs (I) removal percent using NiHCFC	173
118010 / 1	nanoadsorbent.	177
Figure 75	Effect of time on Cs (I) removal percent using NiHCFC nanoadsorbent.	178
Figure 76	Effect of temperature on Cs (I) removal percent using NiHCFC nanoadsorbent.	179
Figure 77	Effect of Cs (I) concentration on the adsorption capacity of	
	NiHCFC nanoadsorbent.	180
Figure 78	Langmuir isotherm (a) and Freundlich isotherm (b) for	
	adsorption of Cs (I) on NiHCFC nanoadsorbent.	181
Figure 79	Pseudo-first-order (a) and Pseudo-second-order (b) models for	
	adsorption of Cs (I) on NiHCFC nanoadsorbent.	183
Figure 80	Van't Hoff plot for adsorption of Cs (I) on NiHCFC	
	nanoadsorbent.	185
Figure 81	Effect of pH on Cs (I) removal percent using CoHCFC	186

	nanoadsorbent.	
Figure 82	Effect of time on Cs (I) removal percent using CoHCFC	
	nanoadsorbent.	187
Figure 83	Effect of temperature on Cs (I) removal percent using CoHCFC	
	nanoadsorbent.	188
Figure 84	Effect of Cs (I) concentration on the adsorption capacity of	
	CoHCFC nanoadsorbent.	189
Figure 85	Langmuir isotherm (a) and Freundlich isotherm (b) for	
	adsorption of Cs (I) on CoHCFC nanoadsorbent.	191
Figure 86	Pseudo-first-order (a) and Pseudo-second-order (b) models for	
	adsorption of Cs (I) on CoHCFC nanoadsorbent.	193
Figure 87	Van't Hoff plot for adsorption of Cs (I) on CoHCFC	
	nanoadsorbent.	195

List of Tables

NO.	Subject	Pag
		es
Table 1	Crystal Size and the obtained Phase of Al ₂ O ₃ samples	
	calcined at 500, 600,800 and 1000 °C prepared using	
	urea, oxalic acid and citric acid, as a fuel.	75
Table 2	Langmuir and Freundlich Constants along with R ²	
	values obtained for removal of Cr(VI) on γ-Al ₂ O ₃	
	nanoparticles.	113
Table 3	Pseudo first and pseudo-second order reaction rate	
	models parameters for adsorption of $Cr(VI)$ on γ - Al_2O_3	
	nanoparticles.	116
Table 4	Thermodynamic parameters for adsorption of Cr (VI)	
	on γ -Al ₂ O ₃ nanoparticles.	117
Table 5	Langmuir and Freundlich Constants along with R ²	
	values obtained for removal of Cr(VI) and ⁹⁹ TcO ₄ on	
	MgFe ₂ O ₄ nanoadsorbent.	127
Table 6	Pseudo first and pseudo-second order reaction rate	
	models parameters for adsorption of Cr(VI) and	
	⁹⁹ TcO ₄ on MgFe ₂ O ₄ nanoadsorbent.	130
Table 7	Thermodynamic parameters for adsorption of Cr(VI)	
	and ⁹⁹ TcO ₄ on MgFe ₂ O ₄ nanoadsorbent.	133
Table 8	Langmuir and freundlich constants along with R ²	
	values obtained for removal of Cr(VI) and ⁹⁹ TcO ₄ on NiFe ₂ O ₄ nanoadsorbent.	
		143

Table 9	Pseudo first and pseudo-second order reaction rate	
	models parameters for adsorption of Cr(VI) and	
	⁹⁹ TcO ₄ on NiFe ₂ O ₄ nanoadsorbent.	
		146
Table 10	Thermodynamic parameters for adsorption of Cr(VI)	
	and ⁹⁹ TcO ₄ on NiFe ₂ O ₄ nanoadsorbent.	149
Table 11	Langmuir and freundlich Constants along with R ²	
	values obtained for removal of Cr(VI) and ⁹⁹ TcO ₄ on	
	CoFe ₂ O ₄ nanoadsorbent.	160
Table 12	Pseudo first and pseudo-second order reaction rate	
	models parameters for adsorption of Cr(VI) and	
	⁹⁹ TcO ₄ on CoFe ₂ O ₄ nanoadsorbent.	163
Table 13	Thermodynamic parameters for adsorption of Cr(VI)	
	and ⁹⁹ TcO ₄ on CoFe ₂ O ₄ nanoadsorbent.	165
Table 14	Langmuir and freundlich Constants along with R ²	
	values obtained for removal of Cs (I) on MgHCFC	
	nanoadsorbent.	172
Table 15	Pseudo first and pseudo-second order reaction rate	
	models parameters for adsorption of Cs (I) on	
	MgHCFC nanoadsorbent.	173
Table 16	Thermodynamic parameters for adsorption of Cs (I) on	
	MgHCFC nanoadsorbent.	175
Table 17	Langmuir and Freundlich Constants along with R ²	
	values obtained for removal of Cs (I) on NiHCFC	
	nanoadsorbent.	182