

PUNCHING OF SELF- COMPACTING HIGH STRENGTH REINFORCED CONCRETE FLAT SLABS AT CORNER COLUMN

A Thesis

Submitted to the Faculty of Engineering
Ain Shames University for the Partial Fulfillment
of the Requirements of The Degree of Master of Science
In Civil Engineering (Structural Engineering)

Prepared by ENG. WAEL NABIL HANNA KERLOS

B.Sc. in Civil Engineering, June 2012 Higher Institute of Engineering – El Shorouk Academy

Supervisors

Prof. Dr. AYMAN HUSSEIN HOSNY KHALIL

Professor of Reinforced Concrete Structures, Ain Shams University, Cairo, EGYPT

Dr. MAHMOUD MOHAMED EL-KATEB

Assistant Professor, Structural Engineering Department, Ain Shams University, Cairo, EGYPT

PUNCHING OF SELF- COMPACTING HIGH STRENGTH REINFORCED CONCRETE FLAT SLABS AT CORNER COLUMN

A Thesis For The M.Sc. Degree in Civil Engineering (STRUCTURE ENGINEERING)

ENG. WAEL NABIL HANNA KERLOS

B.Sc. in Civil Engineering, June 2012 Higher Institute of Engineering – El Shorouk Academy

THESIS APPROVAL

EXAMINERS COMMITTEE	SIGNATURE
Prof. Dr. Mohamed El-Saied Issa	
Professor of Concrete Structures,	
Faculty of Engineering, Cairo University.	
Prof. Dr. Omar Ali Mousa El Nawawy	
Professor of Concrete Structures,	
Faculty of Engineering, Ain Shams University.	
Prof. Dr. Ayman Hussein Hosny Khalil	
Professor of Concrete Structures,	
Faculty of Engineering, Ain Shams University.	

STATEMENT

This dissertation is submitted to Ain Shams University, Faculty of Engineering

for the degree of M.Sc. in Civil Engineering.

The work included in this thesis was carried out by the author in the department

of Structural Engineering, Faculty of Engineering, Ain Shams University, from

April 2013 to August 2018.

No part of the thesis has been submitted for a degree or a qualification at any

other University or Institution.

The candidate confirms that the work submitted is his own and that appropriate

credit has been given where reference has been made to the work of others.

Date : 9/8/2018

Name: WAEL NABIL HANNA KERLOS

Signature:

AUTHOR

Name : Wael Nabil Hanna Kerlos

Date of birth : 20 August 1990

Place of birth : Qalubia, Egypt

Academic degree : B.Sc. in Civil Engineering

Major : Structural Engineering

University : El Shorouk Academy

Date : June-2012

Current job : Teaching Assistant, Civil Engineering, El Shorouk

Academy

ABSTRACT

High strength concrete and shear reinforcement can be used to increase the strength of concrete flat plates in punching. And this could help in reducing the slab thickness, weight and cost of structure. If high strength concrete is self-compacting, the production would be more industrialized. However, to be effective, the shear reinforcement must be well anchored in the compression and tension zones of the slab.

This research investigates, experimentally, the behaviour of corner slab-column connections made of high strength self-compacting concrete and provided with shear reinforcement. The experimental program included testing of six flat slab specimens having dimensions 1100*1100 mm with 160 mm thickness. The investigated variables are the concrete compressive strength, the shear reinforcement, and the aspect ratio of supporting column. The concrete compressive strength varied from 30MPa to 80MPa, while the aspect ratio of supporting column ranged from 1 to 3. The tested six specimens were loaded at corner column with a single concentrated load until failure.

The general deformational behavior of the tested specimens was examined and recorded (cracking, deflection, and strain in steel). To evaluate the results of the tested specimens, different international codes have been used to calculate the punching strength of test slabs.

The test results showed that using of High Strength Self-Compacting Concrete improved the performance of slab behavior and increased the shear punching capacity; also showed that the presence of shear reinforcement improved punching shear but without remarkable percentage, while changing the column aspect ratio had remarkable effect on the punching shear capacity.

Key Words: Punching shear, High strength self-compacting concrete, Shear strength, Shear reinforcement, Flat plates.

ACKNOWLEDGMENTS

First and foremost, praise and thanks for God.

I would like to express my deepest gratitude and appreciation to my supervisor **Prof. Dr. AYMAN HUSSEIN HOSNY KHALIL**, Professor of Reinforced Concrete Structures, Ain Shams University, for his kind supervision, support, guidance, help, encouragement and useful suggestions since the start of this work.

I am indebted to **Dr. MAHMOUD MOHAMED EL-KATEB**, Assistant Professor, Structural Engineering Department, Ain Shams University, for his constant supervision, planning, generous support, helpful advice and constructive thoughts throughout this work. For his kind, long discussion and his continues revision of the work.

Finally, I make all the meanings of love, gratitude and appreciation to **my** family for their love and encouragement.

TABLE OF CONTENTS

	page
ABSTRACT	i
ACKNOWLEDGEMENTS	ii
TABLE OF CONTENTS	iii
LIST OF FIGURES	vii
LIST OF TABLES	xi
CHAPTER 1: INTRODUCTION	1
1.1 General	1
1.2 Objectives and scope of the research program	3
1.3 Organization of the thesis.	4
CHAPTER 2: LITERATURE REVIEW	5
2.1 Back ground	5
2.2 Concrete Punching Shear Phenomena.	7
2.3 Previous Researches for Punching Failure in Slab Column Connection.	10
2.4 Characteristic Behavior Failure of Slab Column Connection	18
2.5 Factors Influencing the Punching Shear Strength	20
2.5.1 Slab Depth	20
2.5.2 Continuous Drop Panel	20
2.5.3 Type of Concrete and Strength	21
2.5.4 Position of Critical Section for Punching	23
2.5.5 Effect of Perimeter to Depth Ratio (b0/d)	24
2.5.6 Effect of Column Aspect Ratio	25
2.5.7 Effect of Clear Concrete Cover	28
2.5.8 Reinforcement Type, Ratio and Arrangement	29
2.5.8.1 Effect of Tension Steel Reinforcement	29
2.5.8.2 Effect of Compression Steel Reinforcement	34
2.5.8.3 Effect of Arrangement of Reinforcements	35
2.5.8.4 Effect of Extension of Column Reinforcement inside the Slab	36

2.5.9 Effect of Span to Depth Ratio	36
2.5.10 Size Effect	37
2.5.11 Effect of Boundary Conditions	38
2.5.12 Effect of Shear Reinforcement for Slab-Column Connections	39
2.5.12.1 Vertical Stirrups	41
2.6 Relation between Structure and Test Set Up	43
2.6.1 Single Column Test Models	43
2.6.2 Double or Multi Columns Test Models	45
2.6.3 Multi Story Models	47
2.7 Conclusions of the Previous Works	48
CHAPTER 3: EXPERIMENTAL PROGRAM	49
3.1 Introduction	49
3.2 Characteristics of the Used Materials	49
3.2.1 Coarse Aggregate and Sand	49
3.2.2 Cement	50
3.2.3 Mixing Water	50
3.2.4 Steel Reinforcement	50
3.2.4.1 Flexural Reinforcement	50
3.2.4.2 Shear Reinforcement	50
3.2.5 Silica Fume	51
3.2.6 Super plasticizer (ViscoCrete® -3425)	51
3.3 Concrete Mix	52
3.3.1 High Strength Self Compacting Concrete (HSSCC)	52
3.3.2 Normal Strength Concrete (NSC)	53
3.4 Specimen Details	54
3.5 Geometry of Specimens	56
3.6 Preparation of Test Specimens	62
3.7 Load Set up & Test Procedure	68
3.8 Measuring Device	70
3.8.1 Electrical Strain Gauges	70
3.8.2 Test Measurements	70

CHAPTER 4: EXPERIMENTAL RESULTS AND DISCUSSION	71
4.1 General	71
4.2 Modes of Failure for the Reinforced Concrete Slabs	71
4.3 Analysis and Discussion of the Test Results	71
4.3.1 Specimen SQNC	71
4.3.1.1 Crack Pattern and Propagation	71
4.3.1.2 Deformational Behavior	73
4.3.1.3 Load – Strain Relation Ship	73
4.3.2 Specimen SQNSH	74
4.3.2.1 Crack Pattern and Propagation	74
4.3.2.2 Deformational Behavior	75
4.3.2.3 Load – Strain Relation Ship	76
4.3.3 Specimen SQH	77
4.3.3.1 Crack Pattern and Propagation	77
4.3.3.2 Deformational Behavior	79
4.3.3.3 Load – Strain Relation Ship	79
4.3.4 Specimen SQHSH	80
4.3.4.1 Crack Pattern and Propagation	80
4.3.4.2 Deformational Behavior	82
4.3.4.3 Load – Strain Relation Ship	82
4.3.5 Specimen SR1H	84
4.3.5.1 Crack Pattern and Propagation	84
4.3.5.2 Deformational Behavior	85
4.3.5.3 Load – Strain Relation Ship	86
4.3.6 Specimen SR2H	87
4.3.6.1 Crack Pattern and Propagation	87
4.3.6.2 Deformational Behavior	88
4.3.6.3 Load – Strain Relation Ship	89
4.4 Comparison Between Tested Specimens	90
4.4.1 Group (1): Specimens SQNC & SQNSH	90
4.4.2 Group (2): Specimens SQH &SQHSH	92
4.4.3 Group (3): Specimens SQNC &SQH	93
4.4.4 Group (4): Specimens SQNSH &SQHSH	95
4.4.5 Group (5): Specimens SQH, SR1H &SR2H	96

CHAPTER 5: PROVISIONS FOR SYMMETRICAL PUNCHING SHEAR	
RESISTANCETOWARDS DIFFERENT INTERNATIONAL CODES	98
5.1 Introduction	98
5.2 Review of the Egyptian code (ECP 203-2017)	98
5.2.1 The Contribution Strength of the Shear Reinforcement	100
5.3 Review of ACI Code 318-14 (American Concrete Institute)	102
5.3.1 Moment Transfer in Slab-Column Connections	103
5.3.2 The Contribution Strength of the Shear Reinforcement	103
5.4 Review of CSA A23.3-2004	105
5.4.1 Moment Transfer in Slab-Column Connections	106
5.4.2 The Contribution Strength of the Shear Reinforcement	106
5.5 Review of BS 8110 -97 (British standard)	107
5.6 Review of Eurocode 2	109
5.6.1 Shear Resistance for Slabs without Punching Shear Reinforcement	113
5.6.2 Shear Resistance for Slabs with Punching Shear Reinforcement	113
5.7 Review of Saudi Building Code (SBC)	115
5.8 Parameters consideration in different codes.	116
5.9 Discussion about the Comparisons of Provisions Codes	117
5.9.1 Comparisons with the Egyptian code (ECP 203-2017)	117
5.9.2 Comparisons with ACI Code 318-14	118
5.9.3 Comparisons with CSA A23.3-2004	119
5.9.4 Comparisons with BS 8110-97	119
5.9.5 Comparisons with Eurocode 2	120
CHAPTER 6: SUMMARY AND CONCLUSIONS	122
6.1 Summary	122
6.2 Conclusions	122
6.3 Recommendations for Future Study	124
REFERENCE	125

TABLE OF FIGURES

	page
Figure (2.1): Flat slab as an easy construction system	6
Figure (2.2): Punching Shear Failure as severe type of failure.	6
Figure (2.3): Typical symmetrical punching failure around an interior column	9
Figure (2.4): Examples for Punching Shear Failures (A state of art (SOA),	
Moussa, 2004).	12
Figure (2.5) Typical punching shear failure and crack patterns (Guan, 1996)	19
Figure (2.6) The Critical Section for Punching	19
Figure (2.7): Slab system with continuous drop panels (band-beams).	21
Figure (2.8): Effect of normal strength concrete (FC') on the punching	
shear strength (Sherif, 1996)	22
Figure (2.9): Shear critical sections for interior column connections	
according to different codes	23
Figure (2.10): Effect of column aspect ratio on the shear strength	
Sherif and Dilger (1996)	27
Figure (2.11): Influence of reinforcement ratio on ultimate punching	
capacity Kuang and Morley (1992)	30
Figure (2.12): Influence of reinforcement ratio punching capacity	
Moussa (2003)	32
Figure (2.13): Effect of Reinforcement Ratio on the Ratio between Failure	
Moment M and Flexural Resistance Mr for Edge Column Connections	
Tested by (Zaghlool (1971)).	33
Figure (2.14): Figure compression steel reinforcement (Moussa (2003))	34
Figure (2.15): Effect of slab effective depth d on the shear resistance	
according to different codes by (sherif (1996))	37
Figure (2.16): Effect of edge restraint on punching shear capacity (Kuang	
and Morley (1992)).	38
Figure (2-17): Several techniques for increasing the resistance of the punching	
shear in slab-column connections (a, b, c, d, e and f)	40
Figure (2-18): Shear reinforcement system by using closed vertical stirrups	
(Specimen CS6 examined by Islam and Park, 1976)	42
Figure (2.19 a): Model tests for interior column connection (inverted model)	44

Figure (2.19b): Model tests for interior column connection	44
Figure (2.20): Model tests for edge column connections	45
Figure (2.21): Idealization of double columns model	46
Figure (2.22): Double or multi columns models	46
Figure (2.23): Multi-story test models.	48
Figure (3.1) Concrete dimensions of tested slab specimens (mm)	54
Figure (3.2) Reinforcement details of tested specimens.	55
Figure (3.3) Details of slab specimen (SQNC).	56
Figure (3.4) Details of slab specimen (SQNSH).	57
Figure (3.5) Details of slab specimen (SQH).	58
Figure (3.6) Details of slab specimen (SQHSH).	59
Figure (3.7) Details of slab specimen (SR1H).	60
Figure (3.8) Details of slab specimen (SR2H).	61
Figure (3.9) Preparation of formwork for tested Specimens	63
Figure (3.10) Preparation of Reinforcement for tested Specimens	63
Figure (3.11) Details of Reinforcement for Specimens & stirrups	64
Figure (3.12) Finishing Preparation of Reinforcement for All Specimens	64
Figure (3.13) Details of specimen without shear reinforcement	64
Figure (3.14) Details of specimen with shear reinforcement	65
Figure (3.15) Performing slump test and measuring slump diameter	65
Figure (3.16) Pouring concrete in slabs	66
Figure (3.17) Concrete treatment	66
Figure (3.18) After removal the formwork for Specimens	67
Figure (3.19) Painted the specimens with plastic	67
Figure (3.20) Test set up of specimen	69
Figure (3.21) Location of LVDT in test specimen	70
Figure (4.1.a): Punching failure column for slab (SQNC)	72
Figure (4.1.b): Crack lines for upper part of slab (SQNC)	72
Figure (4.2): Load-Deflection curve for Specimen (SQNC)	73
Figure (4-3): Load-Strain Curve in Top and Bottom Reinforcement	
for Specimen (SQNC)	74
Figure (4.4.a): Punching failure column for slab (SQNSH)	75
Figure (4.4.b): Crack lines for upper part of slab (SQNSH)	75
Figure (4.5): Load-Deflection curve for Specimen (SONSH)	76

Figure (4-6): Load-Strain Curve in Top and Bottom Reinforcement	
for Specimen (SQNSH)	76
Figure (4-7): Load-Strain Curve in Shear Reinforcement (vertical Stirrups)	
for Specimen (SQNSH)	77
Figure (4.8.a): Punching failure column for slab (SQH)	78
Figure (4.8.b): Crack lines for upper part of slab (SQH)	78
Figure (4.9): Load-Deflection curve for Specimen (SQH)	79
Figure (4-10): Load-Strain Curve in Top and Bottom Reinforcement	
for Specimen (SQH)	80
Figure (4.11.a): Punching failure column for slab (SQHSH)	81
Figure (4.11.b): Crack lines for upper part of slab (SQHSH)	81
Figure (4.12): Load-Deflection curve for Specimen (SQHSH)	82
Figure (4-13): Load-Strain Curve in Top and Bottom Reinforcement	
for Specimen (SQHSH)	83
Figure (4-14): Load-Strain Curve in Shear Reinforcement (vertical Stirrups)	
for Specimen (SQHSH)	83
Figure (4.15.a): Punching failure column for slab (SR1H)	84
Figure (4.15.b): Crack lines for upper part of slab (SR1H)	85
Figure (4.16): Load-Deflection curve for Specimen (SR1H)	86
Figure (4-17): Load-Strain Curve in Top and Bottom Reinforcement	
for Specimen (SR1H)	86
Figure (4.18.a): Punching failure column for slab (SR2H)	87
Figure (4.18.b): Crack lines for upper part of slab (SR2H)	88
Figure (4.19): Load-Deflection curve for Specimen (SR2H)	89
Figure (4-20): Load-Strain Curve in Top and Bottom Reinforcement	
for Specimen (SR2H)	89
Figure (4.21.a): Load-Deflection Curve for Specimens SQNC & SQNSH	
(Under Column)	91
Figure (4.21.b): Load-Deflection Curve for Specimens SQNC & SQNSH	
(0.5Lfrom column)	91
Figure (4.22.a): Load-Deflection Curve for Specimens SQH & SQHSH	
(Under Column)	92
Figure (4.22.b): Load-Deflection Curve for Specimens SQH & SQHSH	
(0.5Lfrom column)	93

Figure (4.23.a): Load-Deflection Curve for Specimens SQNC & SQH	
(Under Column)	94
Figure (4.23.b): Load-Deflection Curve for Specimens SQNC & SQH	
(0.5Lfrom column)	94
Figure (4.24.a): Load-Deflection Curve for Specimens SQNSH & SQHSH	
(Under Column)	95
Figure (4.24.b): Load-Deflection Curve for Specimens SQNSH & SQHSH	
(0.5Lfrom column)	96
Figure (4.25.a): Load-Deflection Curve for Specimens SQH, SR1H & SR2H	
(Under Column)	97
Figure (4.25.b): Load-Deflection Curve for Specimens SQH, SR1H & SR2H	
(0.5Lfrom column)	97
Figure (5.1): Critical sections for punching shear stresses according to	
ECP 203-2017, ACI 318-14 and CSA A23.3-2004 code	101
Figure (5.2) The critical sections for interior, edge and corner columns	
according to ACI 318-14.	104
Figure (5.3): Critical section according to Eurocode 2	110
Figure (5.4): Critical section according to Eurocode 2 for columns	
with enlarged head	111
Figure (5.5) The values of β	112
Figure (5.6) The control perimeters with shear reinforcement	114
Figure (5.7) The shear reinforcement	115

TABLE OF TABLES

	page
Table (3-1): technical date of ViscoCrete® -3425	52
Table (3.2) Concrete mix proportions to produce (HSSCC).	53
Table (3.3) Concrete mix proportions to produce (NSC).	53
Table (3.4) Details of test specimens	55
Table (4-1): Failure and cracking loads for test specimens.	71
Table (5.1): Parameter consideration in different codes.	116
Table (5-2): Comparison between ECP Predicted Shear Load and	
Test Failure Load	118
Table (5-3): Comparison between ACI Predicted Shear Load and	
Test Failure Load	119
Table (5-4): Comparison between BS Predicted Shear Load and	
Test Failure Load	120
Table (5-5): Comparison between EN Predicted Shear Load and	
Test Failure Load	121