

AIN SHAMS UNIVERSITY FACULTY OF ENGINEERING

Structural Engineering

Evaluation of Protective layers on Masonry Structures against Impact

A Thesis submitted in partial fulfilment of the requirements of the degree of

Master of Science in Civil Engineering

(Structural Engineering)

by

Eman Magdy Abd El-Aziz Mohamed

Bachelor of Science in Civil Engineering
(Structural Engineering)

Research Assistant, Construction Research Institute, NWRC Supervised By

Prof. Amr Ali Abdelrahman

Professor of concrete structures, Ain Shams University

Prof. Eehab Ahmad Badr El-din

Professor, Construction Research Institute, National Water Research Center

Dr. Moustafa Abass Moustafa

Lecturer of concrete structures, Ain Shams University

Cairo - (2018)

AIN SHAMS UNIVERSITY FACULTY OF ENGINEERING

Structural

Evaluation of Protective layers on Masonry Structures against Impact

By

Eman Magdy Abd El-Aziz Mohamed

Bachelor of Science In Civil Engineering
(Structural Engineering)

Research Assistant, Construction Research Institute, NWRC

Examinors' Committee

Name and Affiliation	Signature
Prof. Walid Abd El-Latif Ateia Professor of Structural Engineering, Cairo University	
Prof. Ashraf M. Sami Biddah Professor of Concrete Structures Engineering, Ain Shams University	
Prof. Amr Ali Abdelrahman Professor of Concrete Structures Engineering, Ain Shams University	
Prof. Eehab Ahmad Badr El-Din Professor, Construction Research Institute, National Water Research Center	

Date:04 September 2018

Statement

This thesis is submitted as a partial fulfilment of Master of Science in Civil Engineering Engineering, Faculty of Engineering, Ain shams University.

The author carried out the work included in this thesis, and no part of it has been submitted for a degree or a qualification at any other scientific entity.

Eman Magdy Abd El-Aziz Mohamed

Signature

Date:04 September 2018

Researcher Data

Name : Eman Magdy Abd El-Aziz Mohamed

Date of birth : 01/10/1989

Place of birth : Kaluobia/ Egypt.

Last academic degree : Bachelor of Engineering

Field of specialization : Stractural Engineering

University issued the degree : Al Shorouk Academy

Date of issued degree : 2011

Current job : Research Assistant – Construction Resrearch

Institute at NWRC

Thesis Summary

Hydraulic structures in Egypt are considered to be one of the oldest buildings throughout the world and its system is considered to be one of the most complex. The strength of these structures reduced due to deterioration in masonry elements for the hydraulic effect of the water. Impact load due to ship collision and debris on hydraulic structures is one of the most significantly decreasing factors that affect its durability of these structures. This necessitates the use of unusual techniques that would enhance the efficiency of operation and upgrade of such structures to current codes of practices.

One of these techniques is the use of different cementious mixes as a protective layer on masonry hydraulic structures, these mixes are tested and prepared in the lab with different admixtures as (Plasticizer, Adhesive, Fiber, Rubber, and Fly Ash) with different ratios for Fiber (3% & 4%), Rubber (30% & 40%) as sand replacement by volume. The standard compressive, and splitting strength tests were conducted to judge the effect of the added admixtures on concrete behavior. Moreover, impact testing program was applied to specific specimens, with dimensions 200 mm width and height, and 50 mm thickness. The number of blows to first crack load and ultimate was determined. The relationship between the mechanical properties and impact resilience is also presented. The results showed that as the percent of fiber increased, the resistance to impact increased. The variation in results was discussed. Fiber-4% of the sand volume exhibited the best impact resistance, estimated about five times over control mix, with ratio of 83% reduction of compressive strength.

Acknowledgment

Firstly, I would like to express my sincere gratitude to my advisors: Dr.Amr A. Abdelrahman, Professor of Structural Engineering, Ain Shams University, Dr. Eehab A.Badr Eldin, Professor at Construction Research Institute, National Water Research Center, and Dr.Moustafa Abass Lecturer of Structural Engineering, Ain Shams University, for the continuous support of my master study and research, for their patience, motivation, and immense knowledge. Their guidance helped me in all the time of research and writing of this thesis. Besides my advisors, I would like to thank the rest of my friends and colleagues at work, for their insightful comments and encouragement. Last but not the least, I would like to thank my family, my parents, my husband, my little daughter, and to my sisters for supporting me spiritually throughout this thesis and my life in general.

September 2018

Table of Contents

Chapter (1): Introduction	I
1.1. General	1
1.2. Introduction	1
1.3. Research Objectives	3
1.4. Organization of Thesis	3
Chapter (2): Literature Review	5
2.1. Characteristics of Masonry Structures	5
2.1.1. Behavior under compression loads	5
2.1.2. Behavior under Dynamic (Impact) loads	8
2.2. Characteristics of materials1	7
2.2.1. Fiber	7
2.2.2. Rubber	0
2.2.3. Fly ash	3
2.3. Hydraulic Structures	4
2.4. Rehabilitation of Hydraulic structures	5
2.4.1. Implementing Masonry in Rehabilitation of Hydraulic Structures: . 2.	5
2.4.2. Implementing Steel in Rehabilitation of Hydraulic Structures: 2	7
2.4.3. Implementing Concrete in Rehabilitation of Hydraulic Structures 3	0
Chapter (3): Experimental Work	3
3.1. Work stratgy	3
3.2. Materials	3
3.2.1. Water	3
3.2.2. Portland cement	3
3.2.3. Fine Aggregate	4

	3.2.4. Coarse Aggregate	35
	3.2.5. Bricks	35
	3.2.6. Addicrete DM2	36
	3.2.7. Addibond 65	38
	3.2.8. Fly ash	40
	3.2.9. Polypropylene Fiber	41
	3.2.10. Crumb Rubber	42
	3.3. Experimental Program	42
	3.4. Mixes Preparation	42
	3.5. Experimental tests	45
	3.5.1. Methodology of mixes preparing	45
	3.5.2. Curing	45
	3.5.3. Hardened Concrete Tests	45
	3.6. Impact Test	46
	3.7. Test Idea	46
	3.7.1. Charpy Impact Test	48
	3.8. Impact Test Apparatus	50
	3.8.1. Apparatus data	50
	3.8.2. Impact apparatus description	51
	3.9. Specimens Preparation	52
	3.10. Impact Test Preparation	54
	3.11. Impact Test steps	54
	3.12. Calculation of Impact Force	54
	3.13. Calculation of Impact Energy	56
Cl	hapter (4): Analysis Results	57
	4.1. Hardened Concrete Properties	. 57

4.1.1. Compressive Strength of Concrete	57
4.1.2. Tensile Strength of Concrete	63
Chapter (5): Statistical Analysis of IMPACT TEST RESULTS	69
5.1. Control Case (without Protective Layers) Impact Tests	69
5.2. Clay Brick	70
5.2.1. Impact Resistance and Absorbed Energy	72
5.3. Sand Brick	78
5.3.1. Impact Resistance and Absorbed Energy	79
5.4. Cement Brick	81
5.4.1. Impact Resistance and Absorbed Energy	83
5.5. Summary of Impact Test Results	86
5.5.1. Compressive Strength of brick	86
5.5.2. Impact Results for three types of Bricks	87
5.6. Coefficient of Variation for Different Mixes	92
5.7. Standard Deviation of Different Mixes	94
Chapter (6): Conclusions and recommendations	98
Conclusions	98
Further Research Recommendations	99
References	100

List of Figures

Figure 2-1, Sample, (Kaushik et. al., 2007)	5
Figure 2-2, Displacement Measurement in Brick and Mortar, (Kaushik et. al.,	
2007)	7
Figure 2-3, Failure in masonry prisms, (Kaushik et. al., 2007)	8
Figure 2-4, Compressive stress strain curve for masonry prisms, (Kaushik et.	al.,
2007)	8
Figure 2-5, Factors and parameters in a simple pendulum, (Ref. no.45)	9
Figure 2-6, Collision Energy after Minorsky, (Sevennson, 2009)	. 10
Figure 2-7, Equivalent Static Impact Forces Plotted against Ship	. 11
Figure 2-8, Impact forces plotted against ship size after Knott	. 12
Figure 2-9, Diagonal Fracture Line, (Sielicki, 2013)	. 13
Figure 2-10, Vertical Fracture Line, (Sielicki, 2013)	. 13
Figure 2-11, Brick wall under Lateral Dynamic Pressure Loading, (Sielicki,	
2013)	. 14
Figure 2-12, The Behavior of Masonry Failure under Unusual Impulse Loadin	ng,
(Sielicki, 2013)	. 16
Figure 2-13, Evolution of the Blast Wave, (Sielicki, 2013)	. 17
Figure 2-14, The Relation between Fiber Quantity and Aspect ratio, (Ref,	
no.20)	. 18
Figure 2-15, The Relation between Load and Deformation for Concrete with	
Different Fiber ratio, (Ref, no.20)	. 19
Figure 2-16, (a) indirect tensile strength test apparatus	. 19
Figure 2-17, Deteriorated Masonry due to Impact, (Ref, no.33)	. 25
Figure 2-18, Deterioration in the Abutment, (Ref, no.33)	. 26
Figure 2-19, Impact Steel Protection on Guide Pier during Construction,	
(Technical Report, CRI)	. 28

Figure 2-20, Eroded Stone Removed, Steel Plates Placed in Piers 1937 at	nd
Situation in 2002. (Technical Report, CRI)	28
Figure 2-21, Cracking in Guide Pier and Parapet supported by vents' arc	hes.
(Technical Report, CRI)	29
Figure 2-22, Salheyia Regulator before and During Rehabilitation with S	Iteel
Jackets. (Technical Report, CRI)	29
Figure 2-23, Damage Weir Pillar at the Hydropower Plant of Albbruck D	Oogern,
(Ref, no.33)	30
Figure 2-24, The Damaged Zone above the Water Level, (Ref, no.33)	30
Figure 2-25, damaged weir pillar at the hydropower plant of Albbruck D	ogern:
the carved and chiseled Concrete zone (left); the placed ancho	ors with
fixed reinforcement mesh for temperature measurement (right	t), (Ref,
no.33)	31
Figure 2-26, Illustrate Implementation of Concrete Method in Rehabilita	tion.,
(Ref, no.33)	31
Figure 2-27, Steps of preplaced aggregate concrete., (Ref, no.33)	31
Figure 2-28, Bagged concrete., (Ref, no.33)	32
Figure 3-1, Grain Size Distribution of Fine Aggregate	34
Figure 3-2, Grain Size Distribution of Coarse Aggregate	35
Figure 3-3, Effect of Addicrete DM2 on Compressive Strength	38
Figure 3-4, Effect of Addicrete DM2 on Water Absorption Ratio	38
Figure 3-5, Effect of Addibond 65 on Flexure Strength of Cement Morta	r
According to CMB	40
Figure 3-6, Effect of Addibond 65 on the Abrasion Resistance of Cemen	t
Mortar According to CMB	40
Figure 3-7, Illustration of mixture I.D.	43
Figure 3-8, Universal Testing Machine	45
Figure 3-9, Split Tensile Test	46
Figure 3-10. Impact Test Apparatus	47

Figure 3-11, Free Body Diagram for the Proposed Test	. 49
Figure 3-12, Charpy test Free Body Diagram	. 49
Figure 3-13, Schematic diagram for the proposed device	. 51
Figure 3-14, Used Device in CRI labs	. 51
Figure 3-15, Tested Sample after construction.	. 52
Figure 3-16, Tested Sample Schematic Diagram	. 52
Figure 3-17, Tested Sample during pouring cementious mixes	. 52
Figure 3-18, Tested Sample during curing	. 53
Figure 3-19, Tested Sample after drying	. 53
Figure 3-20, Test Apparatus	. 53
Figure 3-21, Ship Collision with Pier	. 55
Figure 3-22, Ship Collision with Pier	. 55
Figure 4-1, Compressive Strength of Mixes	. 59
Figure 4-2, Compressive Strength at 7 day.	. 60
Figure 4-3, Compressive Strength at 28 days	. 62
Figure 4-4, Tensile Strength of Mixes	. 65
Figure 4-5, Tensile Strength at 7 days	. 65
Figure 4-6, Tensile strength at 28 days	. 67
Figure 5-1, Tensile failure for different types of bricks	. 70
Figure 5-2, Impact Test Results In Case without Using Fly Ash	.71
Figure 5-3, Impact Test Results in Case using 20% Fly Ash	. 72
Figure 5-4, Absorbed Energy equation	. 72
Figure 5-5, Impact Test Results In Case First crack using 0% Fly Ash (Clay	
Brick)	. 73
Figure 5-6, Failure Pattern at 0% Fly Ash (Clay Brick)	. 74
Figure 5-7, Impact Test Results In Case Failure using 0% Fly Ash (Clay	
Brick)	. 75
Figure 5-8, Impact Test Results In Case First crack using 20% Fly Ash (Clay	
Brick)	. 76

Figure 5-9, Case of First crack using 20% Fly Ash (Clay Brick)	.77
Figure 5-10, Failure Pattern at 0% Fly Ash (Clay Brick)	. 77
Figure 5-11, Impact Test Results In Case Using Fly Ash (Sand Brick)	. 78
Figure 5-12, Impact Test Results In Case First crack using 20% Fly Ash (San	d
Brick)	. 80
Figure 5-13, Case of Failure using 20% Fly Ash (Sand Brick)	. 80
Figure 5-14, crack pattern for sand brick protective layers	. 81
Figure 5-15, Crack pattern for fiber mix protective layer with sand brick	. 81
Figure 5-16, Impact Test Results In Case Using Fly Ash (Cement Brick)	. 82
Figure 5-17, Impact Test Results In Case First crack using 20% Fly Ash	
(Cement Brick)	. 84
Figure 5-18, Impact Test Results In Case Failure using 20% Fly Ash (Cemen	t
Brick)	. 84
Figure 5-19, Crack and Failure pattern for protective layers with cement	
blocks	. 85
Figure 5-20, Crack propagation pattern for protective layer (fiber add.) with	
cement blocks	. 86
Figure 5-21, The Compressive Strength of Three Types of Bricks (Clay, San	d,
and Cement)	. 87
Figure 5-22, Failure Shape on Control prism (Sand Brick)	. 88
Figure 5-23, Failure Shape on Control prism (Clay Brick)	. 88
Figure 5-24, Failure shape on Control prism (Clay Brick)	. 88
Figure 5-25, Failure Shape on Control prism (Cement Brick)	. 88
Figure 5-26, Comparison between the Three Types of Brick, First Crack Cas	e
(Control mix)	. 89
Figure 5-27, Comparison between the Three Types of Brick, Failure Case	
(Control mix)	. 89
Figure 5-28, Failure Shape on Fiber 40% (Cement Brick Prism)	. 90
Figure 5-29, Failure Shape on Fiber 40% (Cement Brick Prism)	. 90

Figure 5-30, Failure Shape on Fiber 40% (Cement Brick Prism)	91
Figure 5-31, Three Types of Brick, First Crack Case (4% fiber mix)	91
Figure 5-32, Three Types of Brick, Failure Case (4% fiber mix)	92

List of Tables

Table 2-1, the effect of IRA and WA on Compressive strength, (Kau	shik et. al.,
2007)	7
Table 2-2, Codes used in Impact Analysis (Sielicki, 2013)	16
Table 3-1, Materials	33
Table 3-2, Physical and Mechanical Properties	34
Table 3-3, Chemical Properties	34
Table 3-4, Physical Properties of Fine Aggregate	34
Table 3-5, Physical Properties of Coarse Aggregate	35
Table 3-6, Properties of the Clay Brick	36
Table 3-7, Properties of the Sand Brick	36
Table 3-8, Properties of the Cement Brick	36
Table 3-9, the properties of Addicrete DM2	37
Table 3-10, the properties of Addibond 65 According to CMB	39
Table 3-11, Technical Data: (25 °C) According to CMB	40
Table 3-12, Properties of fly ash	41
Table 3-13, Properties of C.M.B Fiber	41
Table 3-14, Experimental program matrix	44
Table 4-1, Average Compressive Strength at 7 and 28 days	58
Table 4-2, Compressive Strength at 7 day	60
Table 4-3, Compressive Strength at 28 days.	61
Table 4-4, Average Tensile Strength at 7 and 28 days	64
Table 4-5, Tensile Strength at 7 day.	65
Table 4-6, Tensile strength at 28 day	67
Table 5-1, Impact test results for different types of bricks	69
Table 5-2, Impact Results Using 0% Fly Ash	70
Table 5-3, Impact Results Using 20% Fly Ash	70