

Possible Protective Role of VitaminB₁₂ against Silicon Dioxide (SiO₂) Nanoparticles- Induced Liver Toxicity in Adult Male Rats.

A thesis submitted for the degree of M. Sc. of Science of Zoology

By

Wafaa Ahmed Mohammed Morsy

Demonstrator in Zoology Department Faculty of Women for Arts, Science & Education Ain Shams University

Under Supervision of

Prof. Dr. Shadia Mohamed Kadry

Professor of Histology and Histochemistry.

Zoology Department, Faculty of Women for Arts, Science and Education - Ain Shams University.


Dr. Amany Abd El Hameid Mahmoud Osman

Assist.Prof. of Histology and Histochemistry.

Zoology Department, Faculty of Women for Arts, Science and Education - Ain Shams University.

Dr. Aml Salem Saleh Ahmed

Lecturer of Zoology.
Zoology Department, Faculty of Women for Arts, Science and Education - Ain Shams University.

QUALIFICATIONS

Name: Wafaa Ahmed Mohammed Morsy

Scientific Degree: B. Sc. of Science

Department: Zoology

College: Faculty of women for Arts, Science &Education

University: Ain Shams University

B. Sc. Graduation year: 2013

M. Sc. Graduation year: 2018

APPROVAL SHEET

Name: Wafaa Ahmed Mohammed Morsy

Title: Possible Protective Role of Vitamin B₁₂ against Silicon Dioxide (SiO₂) Nanoparticles- Induced Liver Toxicity in Adult Male Rats.

Scientific Degree: B. Sc. of Science

Board of Scientific Supervisors

Prof. Dr. Shadia Mohamed Kadry

Prof. of Histology & Histochemistry, Department of Zoology, Faculty of Women for Arts, Science and Education- Ain Shams University.

Dr. Amany Abd El Hameid Mahmoud Osman

Assist. Prof. of Histology & Histochemistry, Department of Zoology, Faculty of Women for Arts, Science and Education- Ain Shams University.

Dr. Aml Salem Saleh Ahmed

Lecturer of Zoology, Department of Zoology, Faculty of Women for Arts, Science and Education-Ain Shams University.

ACKNOWLEDGEMENT

First of all, I am eternally indebted to "ALLAH", who gave me strength and introduced me to the best people who helped in initiating and completing this work.

I would like to express my sincere gratitude and grateful acknowledgement to Prof. Dr. Shadia Mohamed Kadry prof. of Histology and Histochemistry- Zoology department- Faculty of women for Arts, Science and Education- Ain Shams University for her patience, thoughtfulness, guidance, close supervision, helpful and fruitful advice, encouragement during the preparation of this work, continuous assistance during the investigation, like none I have ever encountered. She tided me over many difficulties throughout the work, suggesting, planning, and reading the manuscript and constructively criticizing, resulting in the accomplishment of the present thesis. The content contained within is clearly a reflection of her ability as a mentor without whom this work would not be possible. Her constant dedication to the profession in inspiring and I have learned the knowledge and skills needed for a successful future. For that, I am eternally grateful for her sincere guidance.

I am especially indebted to **Dr. Amany Abd El Hameid Mahmoud Osman** Assist. prof. of Histology and HistochemistryZoology department- Faculty of women for Arts, Science and
Education- Ain Shams University for her advice, deep guidance
and continuous monitoring the fulfillment of thesis.

It is a pleasure to express my great thanks and deepest to **Dr. Aml Salem Saleh Ahmed** lecturer of Zoology, Zoology department- Faculty of women for Arts, Science and Education-Ain Shams University, for encouragement and her sincere help in this work.

I wish also to express my deepest thanks to my family and the staff members of Zoology Department, Women' College- Ain Shams University.

ABSTRACT

ABSTRACT

Silicon dioxide nanoparticles are increasingly used in various applications including agriculture, industrial, medical and cosmetics despite of their toxicity. It causes lipid peroxidation, oxidative DNA damage, disruption of cell membrane, mitochondrial damage, apoptosis induction and anti-proliferative activity. Vitamin B_{12} is used as an antioxidant and offers protection against the oxidative stress. The present study aimed to investigate the protective role of vitamin B_{12} against the hepatotoxic potency of silicon dioxide nanoparticles (SiO₂ NPs) in adult male rats.

Sixty male albino rats were used to study the biochemical analysis of liver function parameters, including ALT, AST, ALP, and albumin in the blood serum while, MDA, SOD and GSH were evaluated in liver tissue.

In addition, the histological alteration, histochemical changes including polysaccharides and total proteins as well as immunohistochemistry study was detected. The experimental animals were divided into six groups, 10 rats each. Group1 (control): Rats received 0.5 ml of 0.9% saline orally for 8 weeks. Group 2 (Vit.B₁₂): Rats were treated with saline for 4 weeks then treated with therapeutic dose of Vit.B₁₂ (0.6 mg/kg b.wt.) daily for another 4 weeks. Group 3 (SiO₂ NPs): Rats were treated orally with saline for 4 weeks then given SiO₂ NPs (500 mg/kg b.wt.) twice a week for another 4 weeks. Group 4 (SiO₂ NPs, Vit.B₁₂): Rats were administrated with SiO₂ NPs at dose (500 mg/kg

b.wt.) twice a week for 4 weeks then treated with vit. B_{12} (0.6 mg/kg b.wt.) daily for another 4 weeks. Group 5 (SiO₂ NPs + Vit. B_{12}): Rats were treated orally with saline for 4 weeks then treated with SiO₂ NPs along with Vit. B_{12} for another 4 weeks. Group 6 (Vit. B_{12} , SiO₂ NPs + Vit. B_{12}): (Protective group) Rats were treated with vit. B_{12} for 4 weeks then received SiO₂ NPs in association with vit. B_{12} 1 hour prior to Vit. B_{12} treatment for additional 4 weeks.

The results of the present study revealed that the mean final body weight decreased and the absolute and relative liver weights were increased after SiO₂ NPs administration. There was a very highly significant increase in ALT, AST, ALP and MDA while, there was a significant decrease in albumin, SOD and GSH levels.

The histological studies displayed deleterious alterations in the hepatic tissue where SiO₂ NPs caused distortion of hepatic architecture with swollen vacuolar degeneration and necrosis of hepatocytes. Some nuclei of the degeneration cells showed pyknosis and the other showed karyolysis. Inflammatory cellular infiltration and dilatation of the blood vessels, meanwhile the collagen fibers increased. Histochemical studies revealed that SiO₂ NPs decreased polysaccharides and total proteins in the hepatocytes. The immunohistochemical studies exposed an increase in both caspase-3 and p53 activity after SiO₂ NPs administration.

In SiO₂ NPs followed by vitamin B_{12} group and SiO₂ NPs with vitamin B_{12} group, vitamin B_{12} showed slight and

moderate improvement in all the previous parameters according to antioxidative effect of vitamin B_{12} .

On the other hand, vitamin B_{12} followed by SiO_2 NPs with vitamin B_{12} group showed marked recovery in all these alterations induced by SiO_2 NPs.

LIST OF CONTENTS

- LIST OF TABLES	IV
- LIST OF FIGURES	\mathbf{V}
- LIST OF ABBREVIATIONS	IX
INTRODUCTION	1
• AIM OF THE WORK	4
REVIEW OF LITERATURE	5
1. General side effects of SiO ₂ NPs	5
2. Effects of SiO ₂ NPs on hepatic tissue	8
3. Effects of vitamin B_{12} on hepatotoxicity	13
MATERIALS AND METHODS	16
1. Experimental animals	16
2. Drugs and the route of administration	16
a. Silicon dioxide nanoparticles	16
b. Vitamin B_{12}	17
3. Experimental Design	18
4. Preparation of serum samples	19
5. Preparation of tissue samples	19
6. Determination of the mean final body weight,	
absolute and relative liver weights	20
a. Mean final body weight	20
b. Absolute and relative liver weights	20
7. Biochemical studies	20
a. Determination of serum alanine	
and aspartate aminotransferase	20
b. Determination of serum	
alkaline phosphatase	21
c. Determination of serum albumin	22
d. Determination of malondialdehyde	22
e. Determination of Superoxide dismutase	e 23

f. Determination of Glutathione Reduced	23
8. Histological studies	24
a) Haematoxylin and Eosin	24
b) Masson trichrome	24
9. Histochemical studies	25
a. Polysaccharides content	25
b. Total protein	25
10. Immunohistochemical studies	26
a. Caspase-3	26
b. P53	26
11. Statistical analysis	27
RESULTS	28
A) Mean final body weight,	
absolute and relative liver weights changes	28
1) Mean final body weight	28
2) Absolute and relative liver weights	29
B) Biochemical studies	32
1) Serum alanine aminotransferase (ALT) level	32
2) Serum aspartate aminotransferase (AST) level	32
3) Serum alkaline phosphatase (ALP) level	33
4) Serum albumin level	33
5) Hepatic melondialdehyde (MDA) level	38
6) Hepatic superoxide dismutase (SOD) activity	38
7) Hepatic glutathione reduced (GSH) level	39
C) Histopathological studies	43
a) Haematoxylin and Eosin	43

	b) Collagen fibers	69
	D) Histochemical Studies	84
	a) Polysaccharides content	84
	b) Total Protein	99
	E) Immunohistochemical studies	116
	a) Caspase-3	116
	b) P53	132
•	DISCUSSION AND CONCLUSION	148
	a. The effect of SiO ₂ nanoparticles	148
	b. The effect of vitamin B_{12}	
	on SiO2 NPs treatment	162
•	SUMMARY	171
•	REFERENCES	177

LIST OF TABLES

NO.	Title	Page
1	The mean final body weight, absolute and relative liver weights in control and treated groups during experimental period (8 weeks).	30
2	Serum levels of ALT, AST, ALP and albumin in control and treated group during experimental period (8 weeks).	35
3	Liver MDA, SOD and GSH levels in control and treated groups during experimental period (8 weeks).	40

LIST OF FIGURES

NO.	Title	Page
1	Histogram showing the structure of SiO ₂ nanoparticles.	17
2	Histogram showing the structure of Vitamin B_{12} .	17
3	Histogram showing the mean value of body weight (g) in control and experimental groups.	31
4	Histogram showing The mean value of absolute and relative liver weights (g) in control and experimental groups.	31
5	Histogram showing The mean value of AST and ALT (U/L) after treatment with SiO ₂ and Vit.B ₁₂ as compared to control group.	36
6	Histogram showing The serum levels of ALP (IU/L) in control and treated groups.	36
7	Histogram showing The mean value of albumin (g/dl) in control and experimental groups.	37
8	Histogram showing The mean value of liver MDA level (nmol/g tissue) after treatment with SiO ₂ NPs and Vit.B ₁₂ as compared to control group	41

		1
9	Histogram showing The average level of SOD (U/gm tissue) in control and	41
	treated groups.	
10	Histogram showing The average level	42
10	of GSH (mg/g tissue) in control and	42
	treated groups.	
	Histopathology	
	Haematoxylin and Eosin	
11&12	Photomicrographs of liver sections of control and vitamin B ₁₂ groups.	48
13-19	Photomicrographs of liver sections of rats given SiO ₂ NPs (500 mg/kg b.wt.).	51
20&21	Photomicrographs of liver sections of rats given SiO ₂ NPs followed by vitamin B ₁₂ .	60
22-24	Photomicrographs of liver sections of rats given SiO ₂ NPs with vitamin B ₁₂ .	63
25&26	Photomicrographs of liver sections of rats given vitamin B_{12} followed by SiO_2 NPs with vitamin B_{12} .	68
Collagen fibers		
27&28	Photomicrographs of liver sections of control and vitamin B_{12} groups.	71
29&30	Photomicrographs of liver sections of rats given SiO ₂ NPs.	74
31&32	Photomicrographs of liver sections of rats given SiO_2 NPs followed by vitamin B_{12}	77