

Faculty of science

Zoology department

Evaluation of Chitin Extracted from Different Sources and Some Biological Applications to its Derivatives

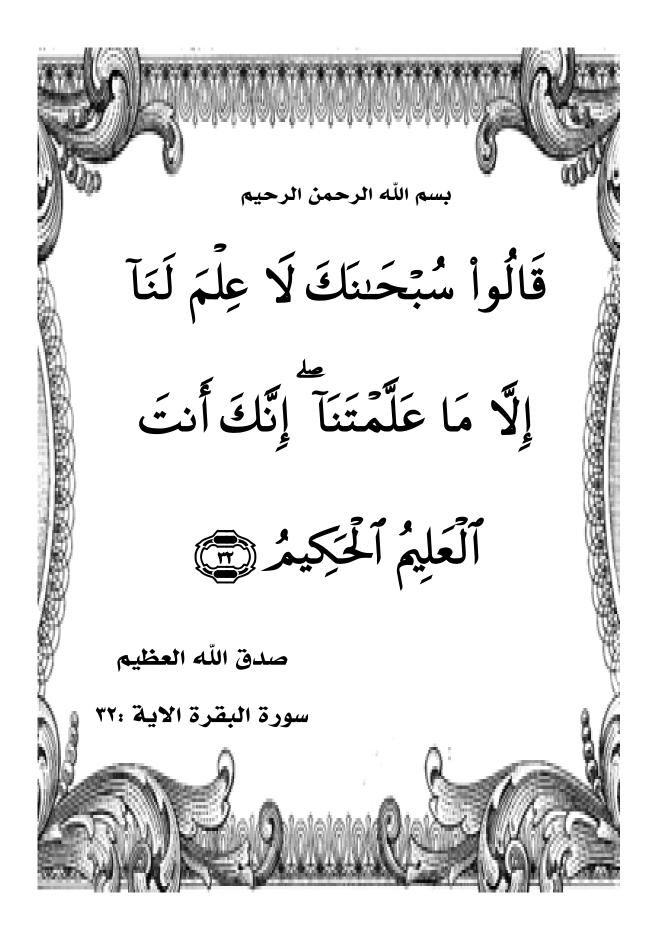
A thesis

Submitted in Partial Fulfillment for the Degree of Master of Science in Zoology

BY Shimaa Samir Hamdy Ahmed

B.Sc.2011

Supervisors Prof. Nefissa Hussein Meky


Professor of Physiology
Zoology Department
Faculty of Science- Ain Shams University

Prof. Rawda Mohamed Badawy

Professor of Taxonomy and Ecology Entomology Department Faculty of Science - Ain Shams University

Hadeer Ibrahim Mohamed

Lecturer of Biophysics
Biophysics Department
Faculty of science -Ain Shams University
2018

Approval Sheet

Name: Shimaa Samir Hamdy Ahmed.

Title: Evaluation of Chitin Extracted from Different Sources and Some Biological Applications to its Derivatives.

Scientific Degree: Master degree of science.

Board of Scientific supervisors

Professor Dr. Nefissa Hussein Meky.

Professor of physiology, Zoology department, Faculty of Science, Ain shams University.

Professor Dr. Rawda Mohamed Badawy.

Professor of Taxonomy and Ecology, Entomology Department, Faculty of Science, Ain Shams University.

Dr. Hadeer Ibrahim Mohamed.

Lecturer of Biophysics, Biophysics Department, Faculty of science, Ain Shams University.

Acknowledgement

First and foremost, I feel always indebted to Allah, the Most Beneficent and merciful. I can do nothing without Him.

I would like to express my deep gratitude and thanks to my supervisors for their help, encouragement, continuous advice and expert supervision to bring this thesis to more than satisfactory. They are always patient, perfect in work organization and their advisors.

Great thanks to prof. Dr. Nefissa Hussein Meky, Prof of Physiology, and Zoology Department, Faculty of Science Ain Shams University, for suggesting the subject of this work and valuble advice.

Very special thanks to **prof** .**Dr**. **Rawda Mohamed Badawy**, Prof of Taxonomy and Ecology, Entomology Department, Faculty of Science, Ain Shams University for her generous help and great support thought out the whole work.

Special thanks to **Dr. Hadeer Ibrahim Mohamed**, Lecturer of Biophysics, Biophysics Department, Faculty of science, Ain Shams University, for help and cooperation.

Shimaa Samir Hamdy Ahmed

Dedication

First and foremost, I feel always indebted to Allah

Deep thanks and great full to my whole family especially my dear mother the center of my life, and my kind sister for everything they have done for me.

List of contents

Subject	Page No.
List of Abbreviations	i
List of Tables	ii
List of Figures	vi
Abstract	viii
Introduction	1
Aim of the work	4
Review of Literature	5
Materials and Methods	40
Results	53
Discussion	121
Summery	132
References	135
Arabic summery	

List of Abbreviations

Abb.	Full-term
bFGF	basic fibroblast growth factor
CI	Crystallinity index
DD	Degree of deacetylation
DRUV	Diffuse reflectance UV-visible
EDTA	Ethylene diaminetetra acetic
FIB	Fibrinogen
FT-IR	Fourier transform infrared spectra
pBS	Phosphate buffer saline
PLTs	Platelets
PT	Prothrombin time
PTT	Partial thrombin time
RBCs	Red blood cells
UV-VIS	UV-visible
WBCs	White blood cells
XRD	X-ray diffraction

List of Tables

Table No.	Title	Page No.
Table (1):	Sample collected species	41
Table (2):	Clarify characteristic peaks for chitin and chitosan	59
Table (3):	Degree of deacetylation of samples of	60
Table (4):	Degree of deacetylation of samples of group II	62
Table (5):	Degree of deacetylation of samples of group III	63
Table (6):	Degree of deacetylation of samples of group IV	64
Table (7):	Relation between the degree of deacetylation (DD)	
	and CrI ₁₁₀ and CrI ₀₂₀	67
Table (8):	Reference ranges of hematological tests	68
Table (9):	The effect of different types of chitosan on platelets	
	count (*10 ³ /µl) with different pH	71
Table (10):	Descriptive statistics for Platelets count by the type	
	of chitosan and pH	73
Table (11):	Fixed effects model for effect of the type of chitosan	
	and change of pH on platelets count	75
Table (12):	Estimated marginal means for platelets count	76
Table (13):	Estimated marginal means for platelets count: By	
	type of chitosan	76
Table (14):	Estimated marginal means for platelets count: By the pH	77
Table (15):	Estimated marginal means for platelets count: By	
Tunic (10)	type of chitosan * pH interaction	78

Table (16):	The effect of different types of chitosan on Red	
	blood cells count (RBCs) (*106/µl) with different	
	pH	79
Table (17):	Descriptive statistics for RBCs count by the type of	
	chitosan and pH	81
Table (18):	Fixed effects model for effect of the type of chitosan	
	and change of pH on RBCs count	83
table (19):	Estimated marginal means for RBCs count: Grand	
	mean	84
Table (20):	Estimated marginal means for RBCs count: By type	
	of chitosan	84
Table (21):	Estimated marginal means for RBCs count: By the	
	рН	85
Table (22):	Estimated marginal means for RBCs count: By type	
	of chitosan * pH interaction	86
Table (23):	The effect of different types of chitosan on WBCs	
	count (*103/μl) with different pH	87
Table (24):	Descriptive statistics for WBCs count by the type of	
	chitosan and pH	89
Table (25):	Fixed effects model for effect of the type of chitosan	
	and change of pH on WBCs count	91
Table (26):	Estimated marginal means for WBCs count: Grand	92
	mean	92
Table (27):	Estimated marginal means for WBCs count: By type	
	of chitosan	92
Table (28):	Estimated marginal means for WBCs count	93

Table (29):	Estimated marginal means for WBCs count: By type	
	of chitosan * pH interaction	94
Table (30):	Effect of type of chitosan on fibrinogen	
	concentration (FIB mg/dL) at pH 4.0 and pH5.2	95
Table (31):	Descriptive statistics for fibrinogen level by the type	
	of chitosan and pH.	98
Table (32):	Fixed effects model for effect of the type of chitosan	
	and change of pH on fibrinogen level	100
Table (33):	Estimated marginal means for fibrinogen level:	
	Grand mean	101
Table (34):	Estimated marginal means for fibrinogen level: By	
	type of chitosan	101
Table (35):	Estimated marginal means for fibrinogen level: By	
	the pH	102
Table (36):	Estimated marginal means for fibrinogen level: By	
	type of chitosan * pH interaction	103
Table (37):	The Effect of type of chitosan on prothrombin time	
	(PT) at pH 4.7 and pH 5.2	104
Table (38):	Descriptive statistics for the PT by the type of	
	chitosan and pH.	106
Table (39):	Fixed effects model for effect of the type of chitosan	
	and change of pH on the PT	108
Table (40):	Estimated marginal means: Grand mean for the	
	PT	109
Table (41):	Estimated marginal means for the PT: By type of	
	chitosan	
	Cincosan	109