

# كليـــــة الهندســـة قســم هندســـة السـيـــــارات

# أمثلة التحكم في التدفق الهيدروليكي لمشغل خطى باستخدام منحي مثلة التحكم في التدفق ميكاتروني

رسالة مقدمة كمتطلب تأهيلي للحصول على درجة دكتوراه الفلسفة في الهندسة الميكانيكية

إعــداد

مهندس / شريف عبدالفتاح عوض الباز حاصل على ماجيستير العلوم في الهندسة الميكانيكية المشـــرفون

كلية الهندسة جامعة عين شمس الكلية الفنية العسكرية كلية الهندسة جامعة عين شمس الكلية الفنية العسكرية

أ.م.د / نبيلة شوقي النحاس أ.د / معتصم عبدالباقي شاهين د / محمد أحمد عبد العزيز أ.م.د / إبراهيم أحمد الشريف



# AIN SHAMS UNIVERSITY FACULTY OF ENGINEERING DEPARTMENT OF AUTOMOTIVE ENGINEERING

# Optimization of a Displacement Controlled Linear Hydraulic Actuator Utilizing Mechatronics Approach

A Thesis submitted in the Partial Fulfillment for the Requirement of the Degree of PhD in Mechanical Engineering

# By **Sherif Abdel Fattah Awad Elbaz**MSc in Mechanical Engineering 2009

### Supervised by

Assoc. Prof. Dr. Nabila S. Elnahas

Prof. Dr. Moatassem A. Shahin

Assoc. Prof. Dr. Ibrahim A. Elsherif

Dr. Mohamed A. Abdel Aziz

**Ain Shams University** 

**Military Technical College** 

**Military Technical College** 

**Ain Shams University** 

Cairo (2018)



# AIN SHAMS UNIVERSITY FACULTY OF ENGINEERING DEPARTMENT OF AUTOMOTIVE ENGINEERING

## Optimization of a Displacement Controlled Linear Hydraulic Actuator Utilizing Mechatronics Approach

# By **Sherif Abdel Fattah Awad Elbaz**MSc in Mechanical Engineering 2009

A Thesis submitted in the Partial Fulfillment for the Requirement of the Degree Of PhD in Mechanical Engineering

#### **Examiner's Committee**

| Name and affiliation                 |       | signa | ature  |
|--------------------------------------|-------|-------|--------|
| Prof. Dr. / M. Galal Rabie           |       |       |        |
| Modern Academy, Cairo                |       |       |        |
| Prof. Dr. / Nabil Abdel Aziz Mahmoud |       |       |        |
| Ain-Shams University, Cairo          |       |       |        |
| Prof. Dr. / Moatasem A. Shahin       |       |       |        |
| Military Technical College, Cairo    |       |       |        |
|                                      | Date: | 1     | / 2018 |

### **STATEMENT**

This thesis is submitted as partial fulfillment of Ph.D. degree in Mechanical Engineering, Faculty of Engineering, Ain Shams University.

The work included in this thesis was carried out by the author during the Period from 2014 to 2018, and no part of it has been submitted for a degree or qualification at any other scientific entity.

The candidate confirms that the work submitted is his own and that appropriate credit has been given where reference has been made to the work of others.

| Name: Sherif Abdel Fattah Awad Elba | Name: | Sherif | Abdel | Fattah | Awad | Elbaz |
|-------------------------------------|-------|--------|-------|--------|------|-------|
|-------------------------------------|-------|--------|-------|--------|------|-------|

Signature

.....

Date: / / 2018

## **RESEARCHER DATA**

Name : Sherif Abdel Fattah Awad Elbaz

Date of Birth : 23 / 7 / 1974

Place of Birth : Dakahlia

Academic Degree : MSC in Mechanical Engineering

Field of Specialization : Mechanical and Mechatronics Engineering

**University Issued of the Degree**: Military Technical College

Date of Issued Degree : 2009

Current Job : Officer in the Authority of Engineering

**Egyptian Army** 

#### ACKNOWLEDGMENT

I would like to express my sincere gratitude to **Prof. Dr. Moatasem A. Shahin** for the continuous support, motivation, patience, and immense knowledge. His guidance, and kindess helped me in all the time of my postgraduate studies from the master to the PhD. I did not find words to express my thanks, and respect to him. Also I wish to express my thanks, and great appreciation to **Assoc. Prof. Dr. Ibrahim Elsherif** for his valuable guidance, continuous help, decent supervision and discussion during the time of this research. His willingness to give his time has been very much apprreciated. All my deepest gratitude, and thanks to **Dr. Mohamed Abdel Aziz** for the facilities made available for me during all the time of preparation of this work. His valuable advices throughout the phases of the work were very important to organize, and finish this work. My thanks to **Assoc. Prof. Dr Nabila Elnahas** for her support during the classes.

My great thanks to **Prof. Dr. Ayman El-Baz** (Speed School, Louisevill Uneversity) and **Dr. Mohamed Hanafy** (Faculty of Engineering-Mattaria), for their continuous help.

My special thanks are extended to Mr. Abdel Hameed Salim, and Mr. Mohamed Salah Abu-Elnaga for their help during the practical phase.

A special thanks to my **mother**, my **brother** and my **sisters** for their support.

Last, but not least, express my warm thanks to my wife, Ahmad, Yasmin for support and encouragement

#### **List of Publications**

- Sherif Elbaz, Moatasem Shahin, Mohamed Abdel Aziz, Ibrahim Elsherif, and Nabila Elnahass "Model Identification of Displacement Controlled Linear Actuator in Hydraulic System" Military Technical College International Journal" Letter of Acceptance.
- Sherif Elbaz, Moatasem Shahin, Ibrahim Elsherif, Mohamed Abdel Aziz, and Nabila Elnahass "Design and Experimentation of Test Rig to Characterize Hydrostatic Drive for Linear Actuator" IJRET-International Journal of Research in Engineering and Technology, Volume 6, Issue 9; September 2017

#### **ABSTRACT**

Displacement controlled hydraulic systems present an effective approach to improve the efficiency of fluid power systems. This approach prevents fluid throttling, which is a major case of power dissipation, by minimizing the use of control valves in circuits. This approach could play an important role in industry and mobile hydraulics in the near future to overcome the problems associated with fossil fuel especially pollution. The work presented in this thesis describes developing, measuring, modeling, and controlling of a displacement controlled hydraulic linear actuator. A practical hydraulic circuit is developed with a small number of common components, and is suitable for many practical applications.

The linear actuator is controlled by changing the swash plate angle of the variable displacement pump which in turn changes the pump delivery. A complete test rig with all necessary instrumentations is designed to measure, monitor, record, and control the hydraulic circuit using mechatronics principals (mechanical, electrical/electronic, and information technology). Model identification is conducted to find the transfer function based on practical measurements. The calculated data were compared with measured results obtained through an extensive experimental program which proved the validity of the model. Two types of controllers are selected and many input signals with different shapes are fed to the system. Good tracking performance is observed between the desired, and the output signals. Experiments are done in different loads to simulate practical conditions and all the data are displayed on line during experiments. Two types of software are used, the first one is made by Visual Basic/Labview packages and the other is done by Matlab Real Time Windows Target toolbox. This work shows a simple solution to the problem arising when using hydraulic cylinders in closed hydraulic circuit which presents a good approach to hydraulic circuit design. Also shows a way to practically identify system transfer function without using analytical methods. During this process, two types of controllers, namely PID and fuzzy tuned PID, were heavily used deployed and compared.

## **CONTENTS**

| 1     | Chapter 1: Introduction                               | 1  |
|-------|-------------------------------------------------------|----|
| 1.1   | Introduction                                          | 1  |
| 1.2   | Current Technologies                                  | 2  |
| 1.3   | Dissertation Goals                                    | 3  |
| 1.4   | Thesis Layout                                         | 4  |
| 2     | Chapter 2: Literature Survey                          | 5  |
| 2.1   | Introduction                                          | 5  |
| 2.2   | Methods of energy saving in hydraulic methods         | 6  |
| 2.2.1 | Valveless approach and improving hydraulic circuits ' | 7  |
|       | components                                            |    |
| 2.2.2 | Uses of displacement controlled actuators             | 16 |
| 2.3   | Control Strategies of Linear Hydraulic Actuators      | 23 |
| 2.4   | System Identification Using Excitation Input Signals  | 32 |
| 2.5   | Summary                                               | 35 |
| 2.6   | Limitation of the surveyed works                      | 36 |
| 3     | Chapter 3: Experimental Set-Up                        | 38 |
| 3.1   | Introduction                                          | 38 |
| 3.2   | Examples of such mechanisms used in heavy machines    | 38 |
| 3.3   | Test rig description                                  | 39 |
| 3.4   | Hydraulic circuit                                     | 42 |
| 3.4.1 | Pump                                                  | 43 |
| 3.4.2 | Boost (charging) Pump                                 | 44 |
| 3.4.3 | Pump analog amplifier                                 | 45 |
| 3.4.4 | Electrical Motor                                      | 46 |
| 3.4.5 | Hydraulic Cylinder                                    | 46 |
| 3.4.6 | Accumulator                                           | 48 |
| 3.4.7 | Relief valves                                         | 49 |
| 3.4.8 | Hydraulic fluid tank                                  | 49 |
| 3.4.9 | Filter                                                | 49 |

| 3.4.10 | Working Fluid                                | 49 |
|--------|----------------------------------------------|----|
| 3.4.11 | System load mechanism                        | 49 |
| 3.5    | Part two: Instrumentations                   | 51 |
| 3.5.1  | Hydraulic Cylinder Displacement Measurement  | 52 |
| 3.5.2  | Pump Port (A) Pressure                       | 53 |
| 3.5.3  | Pump Port (B) Pressure                       | 53 |
| 3.5.4  | Pressure transducer (c)                      | 53 |
| 3.5.5  | Pump Angular Speed                           | 53 |
| 3.5.6  | Hydraulic Fluid Temperature                  | 54 |
| 3.5.7  | Acting Load                                  | 54 |
| 3.5.8  | Pump Torque                                  | 55 |
| 3.5.9  | Measuring of Pump Displacement               | 56 |
| 3.6    | Part three: DAQ, software, and PC            | 57 |
| 3.6.1  | Data Acquisition System (DAQ)                | 58 |
| 3.6.2  | Personal Computer                            | 58 |
| 3.6.3  | DAQ Software                                 | 58 |
| 3.7    | The Test Procedure                           | 60 |
| 3.7.1  | Test measurement and result graphs           | 60 |
| 3.8    | Software used to operate the system controls | 65 |
| 4      | Chapter 4: System Identification             | 67 |
| 4.1    | Introduction                                 | 67 |
| 4.2    | Pump Measurement and identification          | 67 |
| 4.2.1  | Pump displacement measuring                  | 69 |
| 4.2.2  | Pump step response                           | 69 |
| 4.3    | Identification of the complete system        | 70 |
| 4.3.1  | Preparation of input signals                 | 70 |
| 4.3.2  | PRBS power spectrum                          | 72 |
| 4.3.3  | PRBS parameter estimation                    | 73 |
| 4.4    | Linear system model                          | 75 |
| 4.5    | Validations of results                       | 78 |

| 5     | Chapter 5: Controllers and Control Results | 82  |
|-------|--------------------------------------------|-----|
| 5.1   | Introduction                               | 82  |
| 5.2   | PID Controller                             | 83  |
| 5.2.1 | PID Controller Tuning                      | 84  |
| 5.3   | Fuzzy Logic Tuned PID Controller           | 86  |
| 5.3.1 | Fuzzy Logic Based Tuning of PID Controller | 87  |
| 5.3.2 | Estimating the fuzzy factor $(\gamma)$     | 89  |
| 5.4   | Controllers Performance                    | 91  |
| 5.5   | Step Input Results                         | 91  |
| 5.5.1 | Simulated Results                          | 91  |
| 5.5.2 | Actual Results at No Load                  | 93  |
| 5.5.3 | Actual Results at 99 Kg Load               | 94  |
| 5.5.4 | Actual Results at 184 Kg Load              | 96  |
| 5.5.5 | Actual Results at 325 Kg Load              | 97  |
| 5.5.6 | Actual Results at 410 Kg Load              | 99  |
| 5.6   | Response due to Sinusoidal Input           | 101 |
| 5.6.1 | 0.2 Hz at No Load                          | 101 |
| 5.6.2 | 0.3 Hz at No Load                          | 102 |
| 5.6.3 | At 266 kg Load                             | 104 |
| 5.6.4 | At 410 kg Load                             | 105 |
| 5.7   | Controllers Performance Summary            | 107 |
| 6     | Chapter 6: Conclusion and Future Work      | 109 |
| 6.1   | Introduction                               | 109 |
| 6.2   | Conclusion                                 | 109 |
| 6.3   | Limitation of PID Controller               | 110 |
| 6.4   | Future Work                                | 111 |
|       | References                                 | 112 |
|       | Appendices                                 |     |
| A     | Rexroth A10G Variable Displacement Pump    | A-1 |
| В     | Analog Amplifier                           | B-1 |
|       |                                            |     |

| C | Accumulator                                          | C-1 |
|---|------------------------------------------------------|-----|
| D | Relief Valves                                        | D-1 |
| E | Misr Super Hydraulic T 46 Fluid                      | E-1 |
| F | Calibration of Opkon Linear Potentiometer Transducer | F-1 |
| G | Calibration of Port A Pressure Transducer            | G-1 |
| Н | Calibration of Port B Pressure Transducer            | H-1 |
| I | Calibration of Port C Pressure                       | I-1 |
| J | Autonics Shaft Encoder                               | J-1 |
| K | Calibration of Honeywell Load Cell                   | K-1 |
| L | Calibration of 10 Kg Load Cell                       | L-1 |
| M | NACHOD CSSR Analog Angular Velocity Sensor           | M-1 |
| N | DAQ Channels Assignments                             | N-1 |
| 0 | Controller Results at Ramp Input Signals             | O-1 |

## **NOMENCLATURES**

| Symbol             | Description                                 | Unit               |
|--------------------|---------------------------------------------|--------------------|
| $q_{L1}$           | Flow to load number one                     | m <sup>3</sup> /s  |
| A                  | Hydraulic Cylinder Area                     | m <sup>2</sup>     |
| $A_p$              | Cross sectional area of a single piston     | m <sup>2</sup>     |
| D                  | piston rod diameter                         | m                  |
| Е                  | Modulus of elasticity                       | Pa                 |
| F                  | Acting force                                | N                  |
| G(S)               | Transfer function in Laplace domain         |                    |
| $G_p$              | Pump flow gain                              |                    |
| J                  | second moment of area                       | m <sup>4</sup>     |
| K                  | Reynolds number                             |                    |
| $K_d$              | Derivative gain                             |                    |
| $K_{i}$            | Integral gain                               |                    |
| $K_p$              | Proportional gain                           |                    |
| L                  | Hydraulic cylinder displacement             | m                  |
| $L_k$              | Free buckling length                        | m                  |
| N                  | Number of pistons in the machine            |                    |
| $N_{\mathrm{B}}$   | Length of generated PRBS                    |                    |
| n                  | Pump angular speed                          | revolutio<br>n/sec |
| $n_{\rm B}$        | Number of bits in the shift register        |                    |
| $N_s$              | Safety factor                               |                    |
| P                  | Pressure                                    | N/m <sup>2</sup>   |
| P <sub>A</sub>     | Pump Port A pressure                        | N/m <sup>2</sup>   |
| $P_{B}$            | pump Port B pressure                        | N/m <sup>2</sup>   |
| P <sub>Boost</sub> | Boost pump pressure                         | N/m <sup>2</sup>   |
| $P_d$              | Discharge pressure of the pump              | N/m <sup>2</sup>   |
| P <sub>do</sub>    | Steady state discharge pressure of the pump | N/m <sup>2</sup>   |
| P <sub>in</sub>    | Pump input power                            | Watt               |

| $P_{L1}$            | Pressure inside cylinder one                                    | N/m <sup>2</sup>     |
|---------------------|-----------------------------------------------------------------|----------------------|
| $P_{L2}$            | Pressure inside cylinder two                                    | N/m <sup>2</sup>     |
| $P_{Ls}$            | Load sensing pressure                                           | N/m <sup>2</sup>     |
| $P_{Ls}$            | Load sensing pressure                                           | N/m <sup>2</sup>     |
| P <sub>out</sub>    | Pump output power                                               | Watt                 |
| Q                   | Pump flow                                                       | m <sup>3</sup> /sec  |
| $Q_d$               | Volumetric flow rate out from the discharge chamber             | m <sup>3</sup> /sec  |
| $q_{L2}$            | Flow to load number two                                         | m <sup>3</sup> /s    |
| $Q_{po}$            | Steady state volumetric flow rate from the pump                 | m <sup>3</sup> /sec  |
| R                   | Yield strength of the piston rod material                       | N/m <sup>2</sup>     |
| r                   | Piston pitch radius                                             | m                    |
| S <sub>e</sub>      | Hydraulic cylinder max extracting velocity                      | m/sec                |
| $S_{r}$             | Hydraulic cylinder min extracting velocity                      | m/sec                |
| S                   | Laplace operator                                                |                      |
| Т                   | Total length of generated PRBS                                  | sec                  |
| $v_g$               | Pump displacement volume per revolution                         | cm <sup>3</sup> /rev |
| $V_h$               | Fluid volume in the discharge chamber                           | m <sup>3</sup>       |
| Vol <sub>diff</sub> | Volume difference between the cylinder piston side and rod side | m <sup>3</sup>       |
| ΔΡ                  | Pressure difference                                             | N/m <sup>2</sup>     |
| η                   | Efficiency                                                      |                      |
| $\eta_v$            | valve efficiency                                                |                      |
| $\varepsilon_p$     | Overall Efficiency                                              |                      |
| ω                   | Angular velocity of input shaft                                 | rad/sec              |
| α                   | Swash plate angle                                               | rad                  |
| λ                   | slenderness ratio                                               |                      |
| μ                   | Volumetric efficiency                                           |                      |
| e                   | Error                                                           |                      |
| e(t)                |                                                                 | 1                    |

### LIST OF ABBREVIATIONS

| Abbreviation | Description                      |
|--------------|----------------------------------|
| A/D          | Analog to Digital                |
| AI           | Analog Input                     |
| AO           | Analog Output                    |
| BTU          | British Thermal Unit             |
| CBV          | Counter Balance Valve            |
| D/A          | Digital to Analog                |
| DAAPP        | Dual-Acting Axial Piston Pump    |
| DAQ          | Data Acquisition                 |
| DC           | Displacement Controlled          |
| dc           | Direct Current                   |
| DCA          | Displacement Controlled Actuator |
| DSP          | Digital Signal Processing        |
| ECU          | Electronic Control Unit          |
| EFM          | Electro-hydraulic Flow Matching  |
| EM           | Electrical Motor                 |
| EP           | Electro Proportional             |
| FFT          | Fast Fourier Transform           |
| FGS          | Fuzzy Gain Scheduling            |
| FSW          | Fuzzy Set-point Weighting        |
| FTPID        | Fuzzy Tuned PID                  |
| GA           | Genetic Algorithm                |
| HM-LS        | Hydraulic Metering Load Sensing  |
| IAE          | Integrated Absolute Error        |
| ICE          | Internal Combustion Engine       |
| I/O          | Input Output                     |
| IMC          | Internal Model Control           |
| lpm          | Liter per minute                 |
| LS           | Load Sensing                     |