

The Role of Diffusion Weighted MR Imaging in Assessment of Hepatic malignancy after Radiofrequency Ablation

Thesis

Submitted for Partial Fulfillment of the Master Degree in Radio diagnosis

By

Murtada Jawad Hashim M.B.Ch.B.

Prof. Dr. Fatma Salah EL-Din Mohammed

Professor in Radiodiagnosis Radiodiagnosis Faculty of Medicine -Ain Shams University

Dr. Rasha Tolba Khattab

Lecturer of Radiodiagnosis
Radiodiagnosis Faculty of Medicine -Ain Shams University

Faculty of Medicine Ain Shams University 2018

سورة البقرة الآية: ٣٢

Acknowledgments

First and forever, thanks to **Allah**, Almighty for giving me the strength and faith to complete my thesis and for everything else.

I would like to express my deepest gratitude and appreciation to **Prof. Dr. Fatma Salah EL-Din Mohammed,** Professor in Radiodiagnosis, Radiodiagnosis Faculty of Medicine —Ain Shams University, for her generous support and guidance to help me to put this work in its best form and for being an ideal model of a professor to follow. It was indeed an honor to work under her supervision.

It is my pleasure to express my unlimited gratitude and deepest thanks to **Dr. Rasha Tolba Khattab**, Lecturer of Radiodiagnosis, Radiodiagnosis Faculty of Medicine –Ain Shams University, for her kind assistance, faithful supervision, precious help, valuable advice and guidance she offer me to complete this study. No words of gratitude can equal her help and support.

I feel greatly indebted to all my Family, especially my **Wife**, without her great effort, encouragement, help and support this work could not become.

List of Contents

Subject	Page No.
List of Abbreviations	i
List of Tables	iii
List of Figures	v
Introduction	1
Aim of the Work	5
Review of Literature	
Anatomy of the Liver	6
Pathology of hepatic malignancy and its MR correlation	19
MRI Technique	54
MRI Findings after Percutaneous RFA	76
Patients and Methods	85
Results	90
Illustrative cases	108
Discussion	118
Summary and Conclusion	125
References	128
Arabic Summary	

List of Abbreviations

Abbrev. Full-term

ADC : Apparent diffusion coefficient.

AFP: Alpha feto-protein.

CHA : Common hepatic artery.CT : Computed tomography.

DCE-MRI: Dynamic contrast enhanced- magnetic resonance imaging

DEL : Delayed

DW : Diffusion weighted.

DWI : Diffusion weighted imaging.

FOV: Field of view.

Gd-DTPA : Gadolinium-diethylenetriaminepentaacetic acid.

HA : Hepatic artery

HCC: Hepatocellular carcinoma

HCV: Hepatitis C virus

ICC : Intra-hepatic cholangiocarcinoma

IP : In-phase

IVC : Inferior vena cava

LI-RADS: Liver Imaging-Reporting And Data System

MRI : Magnetic resonance imaging.

ms : Millisecond
OP : Out-of-phase.
PV : Portal vein

RE : Relative enhancementRFA : Radio-frequency ablation

ROI : Regions of interest

s/mm² : Second per square millimeter.

Sat : Saturation.
SE : Spin echo.
SI : Signal intensity.

SNR : Signal to noise ratio.

T : Tesla.

List of Abbreviations

TACE: Trans-arterial chemoembolization

TE : Echo Time

THRIVE: T1-weighted high resolution isotropic volume examination.

TR : Repetition time
TSE : Turbo spin echo.

US : Ultrasound

WI : Weighted images

List of Tables

Table No	o. Title Pag	e No.
Table (1):	Imaging Features of Observations by I RADS Category	
Table (2):	Age (years) distribution of the study grou	ıp 90
Table (3):	Sex distribution of the study group	91
Table (4):	Intensity of the lesion in T2 sequence	92
Table (5):	DWI distribution of the study group	93
Table (6):	Arterial phase enhancement in the group.	94
Table (7):	Venous phae in the study group	95
Table (8):	Delay phase in the study group	96
Table (9):	Ablated distribution of the study group	97
Table (10):	Comparison between well ablated lesi and recurrence lesion according to a (years)	ige
Table (11):	Comparison between well ablated lesi and recurrence lesion according to sex	
Table (12):	Comparison between well ablated lesi and recurrence lesion according to intens of T2.	ity
Table (13):	Comparison between well and recurrer according to DWI	
Table (14):	Comparison between well ablated lesi and recurrence lesion according to arter phase.	rial

Table (15):	Comparison between well ablated lesion and recurrence lesion according to venous phase
Table (16):	Comparison between well ablated lesion and recurrence lesion according to delay phase
Table (17):	Frequency and percentage of ADC in normal parenchymal background
Table (18):	ADC values of the residual lesions 106
Table (19):	ADC values of the necrotic tissue after RFA106
Table (20):	Diagnostic Performance of DWI in Discrimination of ablated

List of Figures

Figure I	Vo. Title	Page No.
Figure (1):	The anterior-superior surface of the live	er 6
Figure (2):	Diagram showing hepatic segmentation	ı 8
Figure (3):	Segments of the liver (after Couinaud).	10
Figure (4):	Anatomy of portal vein	11
Figure (5):	Normal anatomy of the hepatic arterial and biliary tract	
Figure (6):	Diagram showing anatomy of the system	biliary 13
Figure (7):	Axial MIP based on 3D contrast - endelayed phase gradient echo images at levels shows the hepatic segments (I–V	various
Figure (8):	Coronal MR Portography images of t showing better assessment of vasculature	hepatic
Figure (9):	Typical changes in intranodular hemo-during multistep hepatocarcinogenesis	•
Figure (10):	MR images in a 66-year-old man wingshow corona enhancement and appearance	capsule
Figure (11):	HCCs with and without definite appearance.	
Figure (12):	MR Images in 39-year-old man wi cirrhosis and multiple cirrhotic nodules, which resemble dysplastic nodules at images	some of
Figure (13):	Gross pathological examination, differs in size and color from back	

	nodules, the gross pathologic definition of a dysplastic nodule	3
Figure (14): '	Transverse Tl-weighted MR images in 50-year- old woman with cirrhosis secondary to autoimmune hepatitis	35
Figure (15): 1	High-grade dysplastic nodule or early HCC in a 52-year-old man with cirrhosis resulting from hepatitis C infection	66
Figure (16):	MR images in a 66-year-old woman with fat- containing HCC and hepatitis B-related cirrhosis	88
Figure (17):	Transverse MR and pathologic images in 61-year-old man with hepatitis C- related cirrhosis	89
Figure (18):	Hepatocellular carcinoma in an 81-year-old woman. 4	0
Figure (19):	Images in a 69-year-old man with encapsulated progressed HCC	-2
Figure (20):	Infiltrative HCC in a 67-year-old man with a history of excessive alcohol use and portal venous thrombosis found at CT performed for follow-up of aortic aneurysm	13
Figure (21):	A 64-year-old woman axial pre-contrast Tl-weighted (a), post-contrast Tl-weighted (b), and subtraction (c) MR images	14
Figure (22):	HCC extending into IVC4	-5
Figure (23):	Arterial phase CT (a) shows increased enhancement of the entire left lobe. It is difficult to discern the boundaries of the lesion.	16
Figure (24):	Contrast-enhanced MRI. Homogeneous hypointensity at Tl WI	8

Figure (25):	Hypervascular metastases in 55-years old man with hepatic metastases from colorectal cancer
Figure (26):	Fatty liver with focal fatty sparing
Figure (27):	Illustration of water molecule movement 63
Figure (28):	Gradient acquisition scheme showing the diffusion sensitizing gradients
Figure (29):	Axial diffusion-weighted image obtained in a 60-year-old woman shows a signal void within the inferior vena cava
Figure (30):	Transverse breath-hold (BH) versus respiratory-triggered (RT) fat-suppressed single- shot SE echo-planar diffusion acquisition in a 78-year old woman with liver cysts
Figure (31):	T2 shine-through effect with DWI
Figure (32):	66-year-old woman who underwent radiofrequency ablation (RF A) of hepatocellular carcinoma79
Figure (33):	MR images in a 59-year-old male with cirrhosis secondary to nonalcoholic steatohepatitis and treated HCC in segment VII of the liver
Figure (34):	67-year-old man who underwent radiofrequency ablation (RFA) of hepatocellular carcinoma
Figure (35):	55-year-old man who underwent radiofrequency ablation (RF A) of hepatocellular carcinoma
Figure (36):	Post-RF A contrast-enhanced CT image reveals enlargement of ablation zones with new air pockets; these, as seen in more inferiorly located ablation zone suggesting abscess formation

Figure (37):	Pie chart age distribution of the study group 90		
Figure (38):	Pie chart sex distribution of the study group 91		
Figure (39):	Pie chart T2 distribution of the study group 92		
Figure (40):	Pie chart DWI distribution of the study group 93		
Figure (41):	Pie chart arterial distribution of the study group		
Figure (42):	Pie chart venous distribution of the study group		
Figure (43):	Pie chart delay distribution of the study group 96		
Figure (44):	Pie chart ablated distribution of the study group		
Figure (45):	Bar chart between well and recurrence according to age (years)		
Figure (46):	Bar chart between well and recurrence according to sex		
Figure (47):	Bar chart between well and recurrence according to T2		
Figure (48):	Bar chart between well and recurrence according to DWI		
Figure (49):	Bar chart between well and recurrence according to arterial		
Figure (50):	Bar chart between well and recurrence according to venous		
Figure (51):	Bar chart between well and recurrenceaccording to delay		
Figure (52):	ROC curve, diagnostic Performance of DWI in Discrimination of ablated. 107		

List of Cases

Case No.	Title	Page No.
Case (1)	•••••••••••••••••••••••••••••••••••••••	108
Case (2)	•••••••••••••••••••••••••••••••••••••••	110
Case (3)	••••••	112
Case (4)	••••••	114
Case (5)	•••••	116

Abstract

Background: MRI is a sensitive modality in detection and characterization of hepatic focal lesion. MRI has traditionally been used to evaluate treatment response in malignant liver lesions. However, the assessment of tumor response after certain treatments, such as radiofrequency ablation (RFA) can be difficult. Aim of the **Work:** To assess role of diffusion weighted MRI in evaluation of treatment response after radiofrequency ablation for hepatic malignancy. Patients and Methods: Ethics committee of the Faculty of Medicine, Ain Shams University, approved this prospective analysis study and cases were supplied by Hospitals of Ain Shams University. 20 cases treated by Radiofrequency ablation for hepatic malignancy were involved in our study. Patients were recruited from Interventional Unit in Radiology Department, Ain Shams University Hospitals. Results: Regarding DWI, our study showed that sensitivity of 83.3% specificity of 85.7% positive predictive value of 71.4%, negative predictive value of 92.3% with diagnostic accuracy of 85%. Our present study showed that the mean ADC of the well ablated lesion was 1.4 X 10⁻³ mm²/sec and of the residual lesion 0.8 X 10⁻³ mm²/sec with significant statistical difference between the residual viable tumor and the well ablated lesions. Moreover, it has been shown in our study that the level of ADC may help us to recommend a cut-off value of 1.233×10-3mm2/s. Conclusion: periphery of the ablation zone, which is principally most at risk of tumor residue, should be analyzed separately. **Recommendations:** Further studies on larger scale of patients are needed to confirm the results obtained by this work.

Key words: Diffusion Weighted MRI, hepatic malignancy, radiofrequency ablation

Introduction

epatocellular carcinoma (HCC) and secondary liver metastases comprise a large proportion of malignancies diagnosed in the United States and worldwide.

Hepatocellular carcinoma (HCC) is the most common primary liver malignancy and is a leading cause of cancer-related death worldwide (*Balogh et al.*, 2016).

DWI can provide information about molecular tissue characteristics, thus it has an additional value in the evaluation & follow up of local ablative therapy in patients with malignant liver tumors.

Correct detection, classification, and characterization of focal hepatic lesions are of paramount importance as they may significantly affect the choice of therapeutic approach in many cases (*Holzapfel et al.*, 2010).

Surgical resection is currently the accepted standard treatment method for potential cure, demonstrating benefit in overall survival time in primary and secondary liver malignancies.

Although liver resection continues to be the standard for curative care in patients with hepatic malignancies, most patients are not candidates for surgical therapy. Therefore,