Effect of Green Tea Versus Black Seed on Methotrexate Induced Cytotoxicity in Oral Mucosa and Submandibular Salivary Gland of Albino Rats

Thesis Submitted to Faculty of Dentistry

Ain Shams University

In partial fulfillment of the requirements for Master's Degree in Oral Pathology

> By Dalia Adel Abd Allah

> > **BDS**

Faculty of Dentistry Ain Shams University 2012

Faculty of Dentistry

Ain Shams University

2018

SUPERVISORS

Dr. Iman Mohamed Helmy

Professor of Oral Pathology Faculty of Dentistry Ain Shams University

Dr. Rehab Fouad Fathi

Lecturer of Oral Pathology Faculty of Dentistry Ain Shams University Thanks **ALLAH** for giving me strength and patience to fulfill this job

May You (ALLAH) accept it from me and consider it good and useful

To my lovely mother and great father, thank you for your constant support, I couldn't have done this without you

To my wonderful husband, thank you for your useful help you were always my back bone

To my lovely Youssef, thank you for lightening my life with your love

To my sisters and brothers, thank you for your love and support

To all who will read this one day and find it useful,

Thank you for your time and trust

Acknowledgment

Very special thanks to **Dr. Iman Mohamed Helmy**, Professor of Oral Pathology, Faculty of Dentistry, Ain Shams University, for her constant effort and advice which extended from the time of choosing the topic and through the whole period of the practical part, writing and revision. I really learned a lot from you.

I am also deeply grateful to **Dr. Rehab Fouad Fathi**, Lecturer of Oral Pathology, Faculty of Dentistry, Ain Shams University, for her kindness, encouragement and valuable assistance.

Special thanks to **Basma Abdelrahman and Ibtehal Ismail**, teaching assistants, Oral Pathology, Faculty of Dentistry, Ain Shams University, for their continuous help and support.

All my gratitude and deep thanks goes to **Fatma Serag Aldin**, teaching assistant, Oral Pathology, Faculty of Dentistry, Ain Shams University, for her helpful training on image J software.

Special thanks to **Dr. Nada Mohamed Mahmoud**, Assistant Professor Pharmacognosy Department, Faculty of Pharmacy, Ain Shams University, for her help in preparing Green Tea extract..

Table of Contents

List of Abbreviations	i
List of Figures	iii
List of Tables	X
Introduction	1
Review of Literature	4
I. Methotrexate	4
A. Structure	4
B. Mechanism of action	4
C. Pharmacokinetics.	5
D. Uses	
E. Side effects.	6
F. Methotrexate induced cytotoxicity in oral mucosa	11
1. Definition	11
2. Etiology	11
3. Clinical manifestations	12
4. Secondary complications of oral mucositis	12
G. Methotrexate induced cytotoxicity in salivary gland	14
1. Effect of Methotrexate on salivary gland tissue	15
2. Effect of Methotrexate on saliva composition	15
3. Treatment of xerostomia	
II. Green Tea	17
A. Composition	17
B. Uses	19
III. Nigella Sativa	25

A. Composition	25
B. Uses.	26
IV. Cyclooxygenase-2.	29
Aim of the study	31
Material and Methods	32
I. Animals	32
II. Materials	32
III. Experimental design	33
IV. Hematoxylin and Eosin staining	38
V. Histochemical staining	38
VI. Immunohistochemical staining	39
A. Reagents	39
B. Immunostaining procedures	40
VII. Immunohistochemical Assessment	42
VIII. Statistical Analysis	45
Results	46
I. Histological Results	46
II. Histochemical Results	62
III. Immunohistochemical Results	67
IV.Statistical Results	82
Discussion	95
Conclusion	109
Recommendations	110
Summary	111
References	114

List of Abbreviations

CMV: Cytomegallo Virus.

CNS: Central Nervous System.

COX-2:Cyclooxygenase-2 enzyme.

COXs: Cyclooxygenases enzymes.

DHFR: Dihydrofolate Reductase.

DNA: Deoxyribonucleic acid.

DAB: Diaminobenzidine.

DPX: Destyrene Plasticizer Xylene.

EBV: Epstein Barr Virus.

EC: Epicatechin.

ECG: Epicatechin Gallate.

EGC: Epigallocatechin.

EGCG: Epigallocatechin Gallate.

FPGS: Folypolyglutamate Synthase.

GC: Gallocatechin.

GCA: Giant Cell Arteritis.

GCG: Gallocatechin Gallate.

GCT: Granular Convoluted Tubules.

GIT: Gastrointestinal Tract.

HIV: Human Immunodeficiency Virus.

HSV: Herpes Simplex Virus.

IC: Intercalated Ducts.

Ig A: Immunoglobulin A.

Ig G: Immunoglobulin G.

Ig M: Immunoglobulin M.

IL-1b:Interleukin-1b.

1L-6: Interleukin-6.

IL-8: Interleukin-8.

MAF: Mean Area Fraction.

MTX: Methotrexate.

MTX-PGs: Methotrexate Polyglutamates.

NADPH: Nicotineamide Adenine Dinucleotide

Phosphate (reduced form).

NF_K**B:** Nuclear Factor Kappa B.

NK: Natural Killer cells.

NSAID: Non Steroidal Anti-inflammatory Drug.

PAS: Periodic Acid Schiff.

PBS: Phosphate Buffer Solution.

PGs: Prostaglandins.

RNA: Ribonucleic Acid

ROS: Reactive Oxygen Species.

S-Ig A: Secretory Immunoglobulin A.

SD: Striated Ducts.

TQ: Thymoquinone.

UV: Ultraviolet.

TNF: Tumor Necrosis Factor.

TNF- α: Tumor Necrosis Factor alpha.

VZV: Varicella Zoster Virus.

List of Figures

Fig. 1: A plate showing steps of the Immunohistochemical assessment 44
Fig. 2 : A photomicrograph of G1SA showing normal acinar and ductal tissue
Fig. 3 : A photomicrograph of G1SB showing normal acinar and ductal structure
Fig. 4: A photomicrograph of G2SA showing dilatation of ducts51
Fig. 5: A photomicrograph of G2SB showing loss of acinar architecture (amalgamation)
Fig. 6 : A photomicrograph of G3SA showing improvement in structure of ducts
Fig. 7: A photomicrograph of G3SB showing acini and ducts restoring their normal architecture
Fig. 8: A photomicrograph of G4SA showing an improvement in ducts and acinic structure
Fig. 9 : A photomicrograph of G4SB showing acini and ducts almost restoring their normal architecture
Fig. 10 : A photomicrograph of G1MA showing normal histological features of the surface epithelium

Fig. 11: A photomicrograph of G1MB showing normal histological features
of the surface epithelium54
Fig. 12: A photomicrograph of G2MA showing epithelial hyperplasia, hyperkeratosis and almost uniform basement membrane
Fig. 13: A photomicrograph of G2MB showing epithelial hyperplasia, hyalinization of keratin layer
Fig. 14: A photomicrograph of G3MA showing reduction of epithelial thickness.
Fig. 15 : A photomicrograph of G3MB showing reduction of epithelial thickness
Fig. 16 : A photomicrograph of G4MA showing reduction of epithelial thickness
Fig. 17 : A photomicrograph of G4MB showing reduction of epithelial thickness
Fig. 18 : A photomicrograph of G1TA showing normal keratinized stratified squamous epithelium with filiform papilla
Fig. 19: A photomicrograph of G1TB showing normal keratinized stratified squamous epithelium with filiform papilla
Fig. 20: A photomicrograph of G2TA showing epithelial hyperplasia and hyperkeratosis

Fig. 21: A photomicrograph of G2TB showing epithelial hyperplasia and
hyperkeratosis59
Fig. 22 : A photomicrograph of G3TA showing reduction of epithelial thickness
Fig. 23 : A photomicrograph of G3TB showing epithelium almost restores its normal thickness
Fig. 24 : A photomicrograph of G4TA showing reduction of epithelial hyperplasia and hyperkeratosis
Fig. 25 : A photomicrograph of G4TB showing reduction of epithelial hyperplasia and hyperkeratosis
Fig. 26 : A photomicrograph of G1SA showing strong positive PAS reaction in the ducts and acini
Fig. 27 : A photomicrograph of G1SB showing strong positive PAS reaction in the ducts and acini
Fig. 28: A photomicrograph of G2SA showing weak positive PAS reaction in the ducts and acini
Fig. 29 : A photomicrograph of G2SB showing weak positive PAS reaction in the ducts and acini
Fig. 30: A photomicrograph of G3SA showing positive PAS reaction in the ducts and acini

Fig. 31: A photomicrograph of G3SB showing positive PAS reaction in the
ducts and acini65
Fig. 32 : A photomicrograph of G4SA showing positive PAS reaction in the ducts and acini
Fig. 33 : A photomicrograph of G4SB showing positive PAS reaction in the ducts and acini
Fig. 34 : A photomicrograph of G1SA showing weak positively stained ductal cytoplasm70
Fig. 35 : A photomicrograph of G1SA showing weak positively stained ductal cytoplasm
Fig. 36 : A photomicrograph of G2SA showing strong positively stained ductal cytoplasm
Fig. 37 : A photomicrograph of G2SB showing strong positively stained ductal cytoplasm
Fig. 38: A photomicrograph of G3SA showing positively stained ductal cytoplasm
Fig. 39: A photomicrograph of G3SB showing weak positively stained ductal cytoplasm
Fig. 40: A photomicrograph of G4SA showing positively stained ductal cytoplasm

Fig. 41 : A p	hotomicrograph	of G4SB she	owing weak	positively	stained
ductal cytoplas	sm				73
	otomicrograph of			•	
	otomicrograph o		• •	•	
Fig. 44 : A p	hotomicrograph	of G2MA sho	owing posit	ively stained	nuclei
and	cytoplasm	of	the	epi	thelium
					75
and cytoplasm Fig. 46: A pho	otomicrograph of of basal and sup	rabasal cells. G3MA show	ing positive	ly stained nuc	75 clei and
					76
-	otomicrograph of matory cells		•	-	
F ig. 48 : A	photomicrograpl	n of G4MA	showing	positively	stained
cytoplasm	and nuclei	of b	asal and	suprabasal	cells
					77

Fig. 49: A p	hotomicrogra	ph of G4N	AB showing	g positively stai	ned nuclei of
•				inflammatory	
Fig. 50 : A ph	otomicrograph	of G1TA	showing pos	sitively stained n	nuclei of basal
basal ep	oithelial	cells	and	positively stain inflammator	ry cells.
nuclei and	cytoplasm	of	epithelial	ing strong posit	inflammatory
cytoplasm	of	epithe	lium	positively staine and	inflammatory
	_	_	_	positively stain	
cytoplasmic	reaction	in tl	ne basal	ving positive and pri	ckle cells
	_	-		g positively stair	
	_	-		g positively sta	

Fig. 58: Box plot showing MAF in all subgroups (5 days duration)
submandibular salivary gland)83
Fig. 59: Box plot showing MAF of COX 2 in all subgroups(5 days duration
(buccal mucosa)85
Fig. 60: Box plot showing MAF of COX 2 in all subgroups (5 days duration
(dorsum of tongue)87
Fig. 61: Box plot showing MAF in all subgroups (10 days duration)
submandibular salivary gland)
Fig. 62: Box plot showing MAF of COX 2 in all subgroups (10 days
duration) (buccal mucosa)91
Fig. 63: Box plot showing MAF of COX 2 in all subgroups (10 days
duration) (dorsum of tongue)93