

Evaluation of Coronary Artery Disease Among Population With Fatty Liver Disease Using Multi-slice Computed Tomography

Thesis

Submitted for Partial Fulfillment of the Master Degree in Radio-diagnosis

By
Sarmad Fatah Aziz

M.B.CH.B

Under Supervision of

Prof. Dr. Wahid Hussein Tantawy

Professor of Radio-diagnosis Faculty of Medicine, Ain Shams University

Dr. Khaled Ahmad Mohamad Ali

Lecturer of Radio-diagnosis Faculty of Medicine, Ain Shams University

Faculty of Medicine
Ain Shams University

2018

سورة البقرة الآية: ٣٢

Acknowledgments

First and foremost, I feel always indebted to Allah, the Most Beneficent and Merciful who gave me the strength to accomplish this work,

I wish to express my deepest gratitude and thanks to Prof. Dr. Wahid Hussein Tantawy Professor of Radio-diagnosis, Faculty of Medicine - Ain Shams University, for his unlimited help and giving me the privilege to work under his supervision.

Words fail to express my appreciation Dr.Khaled Ahmad Mohamad Ali, Lecturer in Radio-diagnosis, Faculty of Medicine - Ain Shams University, for the time and efforts he has devoted to accomplish this work.

To my great lovely family, thank you for your support and patience.

List of Contents

Subject	Page No.
List of Abbreviations	i
List of Tables	iv
List of Figures	vi
Introduction	1
Aim of the Work	4
Review of Literature	
Anatomy of the Coronary Vessels	5
Pathophysiology of Coronary Artery Disease	28
Pathogenesis of Coronary Atherosclerosis	35
Pathogenesis of Fatty Liver Disease	52
Technique of Fatty Liver Measurement	58
Multidetector CT Of Coronary Arteries "Physica principles and techniques"	
Patients and Methods	89
Results	95
Discussion	161
Summary	169
Conclusion	171
References	172
Arabic Summary	

List of Abbreviations

Abbr. Full-term

AHA : American Heart Association

ATP : Adenosine tri phosphate

AV groove: Atrioventricular groove

AVN : Atrioventricular node

CAD : Coronary artery disease

CHD : Coronary artery disease

CRP : C-reactive protein

CT : Computed tomography

CTA : CT angiography

CVD : coronary vascular disease

EBCT : Electron beam CTECG : Electrocardiogram

FFA : Free fatty acids

FGF : Fibroblast growth factor

FL: Fatty Liver

FLD : Fatty liver disease

HDL: High density lipoprotein

HUs : Hounsfield units

IGF-1 : Insulin-like growth factors IGF-1 and IGFBP-3

IHD : Ischemic heart disease

IL-1: Interleukin 1

IMB : Inferior marginal branch

KVp : Kilovoltage peak

LA : Left atrium

LAD : Left anterior descending

LCA : Left coronary artery

List of Abbreviations

LCx : Left circumflex artery

LDL-C: Low density lipoprotein cholesterol

LDLs : Low-density lipoproteinsLM : Left main coronary artery

LV : Left ventricle

LVH : Left ventricular hypertrophy

mAs : Milliampire second

MDCT : Multidetector computed tomography

MI : Myocardial infarction

MIP : Maximum intensity projection

MPR : Multi-planar reformationMRI : Magnetic resonance image

MS : Metabolic syndrome

MSCT : Multislice computed tomographyNASH : Non-alcoholic steatohepatitis

NHLBI : National Heart, Lung, and Blood Institute

OM : Obtuse marginal

PDA : Posterior descending arteryPDGF : Platelet-derived growth factor

PLB : Posterior lateral branch

RA : Right atrium

RCA : Right coronary arteryROI : Region of interestRV : Right Ventricle

RVOT : Right ventricular outflow tract

TNF: Tumor necrosis factor

US : Ultrasound

VRT : Volume rendering technique

List of Tables

Table No	o. Title	Page No.
Table (1):	Demographic data distribution of the group	•
Table (2):	Risk factors distribution of the study	group 96
Table (3):	Percentage of diabetic &non patients with coronary artery disease	
Table (4):	Percentage of hyperlipidemaic & no lipidemaic patients with coronary disease	artery
Table (5):	Percentage of Hypertensive & Hypertensive patients with coronar disease	y artery
Table (6):	Percentage of Smokers & non Spatients with coronary artery disease	
Table (7):	Coronary artery disease distribution study group	

List of Figures

Figure 1	No. Title	Page No.
Fig. (1):	Anatomy of the left coronary artery	6
Fig. (2):	Anatomy of the right coronary artery	10
Fig. (3):	Coronary artery segments according American Heart Association classification	
Fig. (4):	American Heart Association 17-segment n coronary artery territories, anticlockwise ma	
Fig. (5):	Axial maximum intensity projection CT of aortic root	-
Fig. (6):	Volume-rendered images of anterior view in left anterior oblique projection	
Fig. (7):	LAD artery course & branches	21
Fig. (8):	Distal right coronary artery anatomy	23
Fig. (9):	Volume-rendered image	24
Fig. (10):	3D volume rendering of the inferior sur the heart	
Fig. (11):	Volume-rendered images of posterior v	
Fig. (12):	Pathophysiology of coronary artery diseas	se31
Fig. (13):	Different types of vulnerable plaque	34
Fig. (14):	Diagrammatic representation of the at formation and the arbitrarily del consecutive stages.	lineated
Fig. (15):	Simplified schema of diversity of les human coronary atherosclerosis	ions in
Fig. (16):	Pathogenesis of non-alcholic steatohepati traditional 2-hit hypothesis	

List of Figures

Fig. (17):	Pathogenesis of non-alcholic steatohepatitis56
Fig. (18):	Normal appearance of the liver at unenhanced CT61
Fig. (19):	Computed tomography evaluation of hepatic steatosis using computed tomographyL-S index 63
Fig. (20):	Godfrey N. Hounsfield, the father of computed tomography
Fig. (21):	Single vs. Multidetector CT geometry66
Fig. (22):	The dual source CT scanner69
Fig. (23):	Relation of table travel with respect to gantry rotation & beam pitch
Fig. (24):	Patient positioning for cardiac CT80
Fig. (25):	Sex distribution of the study group95
Fig. (26):	Bar chart risk factors distribution of the study group96
Fig. (27):	Percent of diabetic & non diabetic patients with Coronary atherosclerosis & significant CAD97
Fig. (28):	Percent of hyperlipidemic & non hyperlipidemic patients with Coronary atherosclerosis & significant CAD98
Fig. (29):	Percent of hypertensive & Normotensive patients with Coronary atherosclerosis & significant CAD
Fig. (30):	Percent of smokers & Non smokers patients with Coronary atherosclerosis & significant CAD
Fig. (31):	Pie chart coronary artery disease distribution of the study group

List of Cases

Case No.	Title	Page No.
Case (1)		102
Case (2)		108
Case (3)		114
Case (4)		
Case (5)		
Case (6)		
Case (7)		
Case (8)		
Case (9)		149
Case (10)		155

Introduction

Coronary artery disease (CAD) is a complex chronic inflammatory disease, characterized by remodeling and narrowing of the coronary arteries supplying oxygen to the heart. It can have various clinical manifestations, including stable angina, acute coronary syndrome, and sudden cardiac death. It has a complex etiopathogenesis and a multifactorial origin related to environmental factors, such as diet, smoking, and physical activity, and genetic factors II that modulate risk of the disease both individually and through interaction (Sayols-Baixeras et al., 2014).

Fatty liver disease (FLD) is increasingly recognized as the most common liver disorder in Western countries. It is the most common cause of liver enzyme abnormalities in clinical practice, with a prevalence of 15%–20% in the general population and increases steadily to 70%–90% in obese or type 2 diabetic patients (*Assy et al.*, 2000).

Risk factors for atherosclerosis, such as obesity, diabetes & dyslipidemia, are frequently associated with FLD (*Akahoshi et al.*, 2001).

Fatty liver is blamed to play a role in development of atherosclerosis. However, few clinical studies have examined the association between fatty liver disease and subclinical coronary atherosclerosis in patients with low to intermediate cardiovascular risk factors (*Hamaguchi et al.*, 2007).

Moreover, FLD has been included among the components of metabolic syndrome, a clinical condition with a high risk of coronary artery disease (CAD) (*Malik et al.*, 2004).

Recognition of a role for FLD in development of CAD will allow more individuals from the general population with subclinical CAD to be detected at earlier stages when fatty liver is identified. Presence of fatty liver may help in cardiovascular risk stratification and assessment (Assy et al., 2010).

The standard of reference for diagnosis of CAD is still the conventional coronary angiography, however, it is an invasive technique associated with non negligible complication. Moreover, this procedure offers little information on coronary artery wall changes associated with the early stage of coronary artery disease (*Lefebvre et al.*, 2007).

Computed tomography (CT) has evolved continuously since its introduction to medical imaging in the early 1970s. Over the years, all major aspects (e.g., spatial resolution and acquisition speed) have improved, through changes in both hardware and software. A recent stage in the development of

CT is the introduction of multislice computed tomography (MSCT) (*Flohr et al.*, 2005).

Multislice CT coronary angiography has been proposed as a noninvasive modality to help detect coronary plaques and classify coronary artery disease (CAD) (*Akabame et al.*, 2008). It has been used successfully to quantify coronary artery calcium, which helps to predict the presence of coronary artery disease (*Shavelle et al.*, 2000).

Current results, using the 64- channels scanners show that MSCT angiography is a good non-invasive coronary imaging modality that is able to evaluate the coronary anatomy and early detect and grade coronary lesions competing with other non invasive examinations used to detect CAD (*Pugliese et al.*, 2006).

Coronary CT angiography (CTA) can evaluate both calcified plaque and non calcified plaque. Coronary CTA is able to show the lumen of the coronary arteries as well as the vessel wall, analogous to intravascular sonography (*Leber et al.*, 2005).

Multiple studies have shown coronary CTA to have a high negative predictive value for the detection of coronary atherosclerosis: greater than 95% for significant stenosis and approximately 90% for any plaque (*Kelly et al.*, 2008).

Aim of the Work

The aim of this study is to evaluate the presence & the severity of coronary artery disease among FLD population & to evaluate the association of FLD and CAD using MSCT and the possibility of considering FLD as a predictor for CAD.

Anatomy of the Coronary Vessels

Gross anatomy of coronary arteries

The two coronary arteries arise from the aortic sinuses, which are three small dilatations lie opposite the cusps of the aortic valve, in the initial portion of the ascending aorta & supply the muscle & other tissues of the heart. They encircle the heart in the coronary sulcus & send marginal & interventricular branches in the interventricular sulci, which ultimately converge toward the apex of the heart (*Drake et al.*, 2009).

Coronary arteries & their major branches are distributed over the surface of the heart lying within subepicardial connective tissue. The right coronary artery (RCA) arises from the right aortic sinus of the ascending aorta, while the left main coronary artery (LMCA) arises from the left aortic sinus of the ascending aorta (*Snell*, 2004).

Left coronary artery (LCA):

The left main (LM) coronary artery courses for a variable distance from the left coronary sinus before giving rise to the left anterior descending (LAD) and circumflex (LCX) arteries (Figure 1). The length of the LM artery has been reported to vary from 5 to 20 mm. In approximately 15% of cases, a third vessel, the ramus intermedius (RI) artery (Figure 1B), arises from the LM artery between the