

"Synthesis and evaluation of some surface active agents based on Michael addition reaction and their application in some vital fields"

A Thesis Submitted for Degree of Ph.D. in Chemistry

 $\mathcal{B}y$

Fatma Mahmoud Abd Elhafiz Ahmed

(M.Sc. Organic Chemistry)

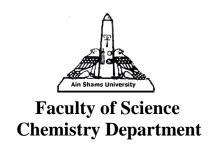
To
Chemistry Department, Faculty of Science
Ain Shams University, Cairo, Egypt

Supervised by

Prof. Dr. Elsayed A. Soliman

Prof. of Organic Chemistry Chemistry Department, Faculty of Science, Ain Shams University

Prof. Dr. Ammona S. Mohamed


Prof. of Applied Organic Chemistry
Petrochemicals Department
Egyptian Petroleum Research Institute

Prof. Dr. Tawfik M. Kassem

Prof. of Applied Organic Chemistry
Petrochemicals Department,
Egyptian Petroleum Research Institute

Assoc. Prof. Dalia E. Mohamed

Assoc. Prof. of Organic Chemistry
Petrochemicals Department
Egyptian Petroleum Research Institute

"Synthesis and evaluation of some surface active agents based on Michael addition reaction and their application in some vital fields"

A Thesis Submitted for Degree of Ph.D. in Organic Chemistry

Вy

Fatma Mahmoud Abd Elhafiz Ahmed

(M.Sc. Organic Chemistry)

To

Chemistry Department, Faculty of Science Ain Shams University, *Cairo*, *Egypt*

Supervised by

Prof. Dr. Elsayed A. Soliman

Prof. of Organic Chemistry Chemistry Department, Faculty of Science, Ain Shams University

Prof. Dr. Ammona S. Mohamed

Prof. of Applied Organic Chemistry
Petrochemicals Department
Egyptian Petroleum Research Institute

Prof. Dr. Tawfik M. Kassem

Prof. of Applied Organic Chemistry
Petrochemicals Department,
Egyptian Petroleum Research Institute

Assoc. Prof. Dalia E. Mohamed

Assoc. Prof. of Organic Chemistry
Petrochemicals Department
Egyptian Petroleum Research Institute

Head of Chemistry Department Prof. Dr. Ebrahim Hosani Ali Badr

Approval Sheet

Student Name: Fatma Mahmoud Abdelhafiz Ahmed "M.Sc in organic Chemistry"

Thesis Title: "Synthesis and evaluation of some surface active agents based on Michael addition reaction and their application in some vital fields".

Supervisors Committee:

Signature

1- Prof. Dr. Elsayed A. A. Hegazy

Prof. of Radiation Chemistry

National Center for Radiation Research

and Technology, Atomic Energy Authority

2- Prof. Dr. Nehal O. Shaker

Prof. of Applied Organic Chemistry

Faculty of Science, Al- Azhar University (Girls)

3- Prof. Dr. Prof. Dr. Elsayed A. Soliman

Prof. of Organic Chemistry

Chemistry Department, Faculty of Science

Ain Shams University

4- Prof. Dr. Tawfik M. Kassem

Prof. of Applied Organic Chemistry

Petrochemicals Department,

Egyptian Petroleum Research Institute

Head of Chemistry Department Prof. Dr. Ebrahim H. A. Badr

Name : Fatma Mahmoud Abd Elhafiz

Science Degree: M.Sc.

Department: Chemistry

College : Faculty of Science

University: Benha University

M.Sc : 2013

Acknowledgement

First, I would like to thank "Allah" for giving me the opportunity and the strength to accomplish this work.

I would like to express my deepest gratitude, appreciation and respect to:

Prof. Dr. Elsayed A. soliman, Professor of Organic Chemistry, Chemistry Department, Faculty of science, Ain Shams University. for his continuous valuable supervision, ongoing assistance and advice throughout this work.

Prof. Dr. Tawfik M. Kassem, Professor of Applied Organic Chemistry, Egyptian Petroleum Research Institute (EPRI), for his direct supervision, valuable discussions and continuous encouragement during all phases of this work.

Prof. Dr. Ammona S. Mohamed, Professor of Applied Organic Chemistry, Egyptian Petroleum Research Institute, for her guidance in suggesting the research point; valuable assistance, guidance in the experimental work. I am grateful for the time and efforts taken by her to read and correct the written materials, presenting the thesis in its final form and for her gentle treatment.

Dr. Dalia E. Mohamed, Associate Professor, Egyptian Petroleum Research Institute, for her advices, supervision, valuable discussions, guidance in the experimental work. I am grateful for the time and efforts taken by her to read and correct the written materials and for her gentle treatment.

Dr. Abeer Mostafa Khattab, researcher, National Organization for Drug Control and Research, for her valuable cooperation in performing the experimental work of the drug delivery part as well as her valuable sharing in writing this part. I am grateful for her advices and valuable discussions.

Finally, I would like to thank my colleagues and all members of Petrochemicals Department, (EPRI) Egyptian Petroleum Research Institute, especially Surface Active Agents Lab., for providing the facilities to carry out the practical work.

To My PARENTS

I have to thank Allah for choosing both of you to be my parents.

Thank you for supporting me

TO MY DEAR HUSBAND,

MY DEAR DAUGHTERS

AND SON

TO MY FAMILY

Thank you for supporting and helping me

Aim of the work

This work aimed to prepare different surface active agent compounds in the form of dendrimers with different generations based on Michael addition reaction, elucidate their chemical structures, evaluate their surface activity and finally, apply them in different vital fields. So, the main target of this thesis can be summarized as follows:

- 1- Synthesis of different generations of polyamidoamine (PAMAM) cationic surfactants using piperazine as core center molecule and ethylene diamine as a repeated unit. This synthesis produced generations of different dendrimer surfactants terminated with methyl ester PAMAM-COOCH₃ and amine PAMAM-NH₂ end groups.
- **2-** <u>Confirmation</u> of the chemical structures of the synthesized compounds using FTIR, ¹H-NMR and Elemental analysis.
- **3- Evaluation** of the surface activity and thermodynamic parameters of the synthesized compounds using surface tension technique at 25°C.
- **4- Application** of the synthesized dendrimer surfactants in different vital fields:

4.1- Biological Applications:

- **a-** <u>Antimicrobial activity:</u> Evaluation of all the synthesized polyamidoamine cationic surfactants as biocides against different pathogenic bacterial and fungal species.
- **b- SRB:** Evaluation of some selected PAMAM-COOCH₃ and PAMAM-NH2 compounds against sulfate reducing bacteria.
- **c-** <u>Anti-tumor Agents:</u> Evaluation of all the synthesized polyamidoamine cationic surfactants as anti-tumor agents against breast cancer cell.

4.2- <u>Drug Delivery Applications</u>

- **a-** <u>Solubility</u> <u>Study of a Hydrophobic Drug</u> using the synthesized polyamidoamine cationic surfactants as solubilizing agent for a poorly soluble drug (coenzyme Q10).
- **b-** <u>Dissolution Study</u> selection of the compounds that gave the highest solubility value to be evaluated in dissolution study of both coenzyme Q10 and Ledipasvir drug.
 - **c-** <u>The toxicity test:</u> Evaluating the toxicity of two of the prepared compounds.

Abstract

Title: "Synthesis and evaluation of some surface active agents based on Michael addition reaction and their application in some vital fields".

Bv

Fatma Mahmoud Abd Elhafiz Ahmed

Chemistry Department, Faculty of Science, Ain Shams University

Degree: Doctor of Philosophy in Organic Chemistry,

Faculty of Science, Ain Shams University, 2018.

Different generations of cationic hyperbranched polyamidoamine (PAMAM) quaternary ammonium salt dendrimers terminated with methyl ester and amine end groups were synthesized. Preparation of these dendrimers was carried out via alternative steps of aza Michael addition reaction (of piperazine as core center molecule) and amidation reaction (by ethylene diamine). Each step was followed by quaternization using alkyl bromide with different chain length (4, 8 or 12) carbon atoms. The chemical structures of the prepared dendrimers were confirmed using FTIR, ¹H-NMR spectra and elemental analysis. Also their surface activity has been studied and their surface parameters including surface and interfacial tension, emulsification power, critical micelle

concentration, effectiveness, efficiency, maximum surface excess minimum surface area were determined. The prepared quaternized dendrimers were applied in different fields where most of them revealed significant results. First, the dendrimers were tested as antimicrobial agents against different strains of bacteria, yeast and fungi, where the results showed that they have significant results as antimicrobial agents. Then, the compounds which gave the most significant biocidal activity were selected to be evaluated against sulfate reducing bacteria. Also, the synthesized polyamidoamine cationic surfactants were applied as anti-tumor agents against breast cancer cell, in which they showed good activity. Finally, in the field of drug delivery, all the synthesized polyamidoamine cationic surfactants were used as solubilizing agents for a poorly soluble drug (coenzyme Q10). The compounds that gave the highest solubility value were selected to be evaluated in the dissolution study of both coenzyme Q10 and Ledipasvir drug. Finally, the toxicity test was performed for two selected compounds from the prepared dendrimers and the results proved safety of these compounds.

Key words: Piperazine; ethylene diamine; Michael addition reaction; hyperbranched polyamidoamine, antimicrobial agents, anticancer and drug delivery.

LIST of CONTENTS

Acknowledgement

Aim of the work

Abstract

List of Contents

List of Figures

List of Tables

CHAPTER I. INTRODUCTION

I.1.	Surfactants In Daily Life	1
I.2.	Surfactants with specific characters	3
I.2.1	Gemini surfactants	3
I.2.2.	Oligomeric Surfactants	5
I.3.	Oligomeric surfactants in solution	6
I.3.1	Adsorption of oligomeric surfactants at the	6
	air/water interface	
I.3.2.	Micellization and Critical Miclle Concentration	13
	(CMC)	
I.3.3.	Increased Solubility	17
I.4.	Classification of the oligomeric surfactants	18

Anionic surfactants	21
Cationic Surfactants	22
Non-Ionic Surfactants	24
Amphoteric/ Zwitterionic Surfactants	25
Polymeric Surfactants	26
What about hyperbranched polyamidoamine?	28
Divergent synthesis	30
Introduction to the Michael addition reaction	33
Some different applications of polymeric	35
surfactants	
Surfactants in microbiology	36
Surfactant as anticancer	39
Surfactants in drug delivery and Solubilization of	41
hydrophobic drug	
Surfactant used in nanoparticles synthesis	46
Surfactants applied in Petroleum field	48
Problems caused by sulfate-reducing bacteria	48
Surfactants as corrosion inhibitors	49
Drilling Fluids	52
	Cationic Surfactants Non-Ionic Surfactants Amphoteric/ Zwitterionic Surfactants Polymeric Surfactants What about hyperbranched polyamidoamine? Divergent synthesis Introduction to the Michael addition reaction Some different applications of polymeric surfactants Surfactants in microbiology Surfactant as anticancer Surfactants in drug delivery and Solubilization of hydrophobic drug Surfactant used in nanoparticles synthesis Surfactants applied in Petroleum field Problems caused by sulfate-reducing bacteria Surfactants as corrosion inhibitors

I.6.5.4.	Enhanced Oil Recovery (EOR)	54	
I.6.5.5.	Demulsifiers for Petroleum Sludge	57	
CHAPTER II. MATERIALS AND EXPERIMENTAL			
II.1.	Materials	60	
II.2.	Synthetic procedure	61	
	Synthesis of hyperbranched polyamidoamine	61	
	(PAMAM) dendrimers		
II.2.1.	Michael addition reaction for G (-0.5, 0.5, 1.5, 2.5)	61	
	hyperbranched polyamidoamine (PAMAM)		
	dendrimers		
II.2.2.	Amidation reaction for G (0.0, 1, 2)	62	
	hyperbranched polyamidoamine (PAMAM)		
	dendrimers		
II.2.3.	Quaternization of hyperbranched polyamidoamine	63	
	(PAMAM) dendrimers		
II.3.	Structural confirmation of the prepared (PAMAM)	70	
	dendrimer surfactants		
II.4.	Surface properties of the prepared (PAMAM)	71	
	dendrimer surfactants		

II.4.1.	Surface tension measurements	71
II.4.2.	Interfacial tension	72
П.4.3.	The emulsifying power	72
II.4.4.	Critical micelle concentration	72
II.4.5.	Effectiveness (π_{cmc})	73
II.4.6.	Efficiency (Pc ₂₀)	73
II.4.7.	Maximum surface excess (Γ_{max})	73
II.4.8.	Minimum surface area (A _{min})	74
II.4.9.	Standard free energies of micellization $\Delta G^{o}{}_{mic}$ and	75
	adsorption ΔG^{o}_{ads}	
II.5.	Antimicrobial activity	75
II.5.1.	Determination of antimicrobial activity of the	75
	prepared compounds against pathogenic bacteria	
	and fungi	
II.5.1.1.	Microorganisms	76
II.5.1.2.	Media	76
II.5.1.3	Agar well diffusion method	77
II.5.2.	Minimum Inhibitory concentration (MIC) of the	78
	tested substances measured by (PPM)	
II.5.3.	Determination of antimicrobial activity of the	79