Ain Shams University Faculty of Science Geophysics Department

Static Modeling and Petroleum System Analysis at Port Fouad Marine Field, Eastern Mediterranean, Egypt

A Thesis submitted for the degree of Master of Science as a partial fulfillment for the requirements of Master degree of Science in Applied Geophysics.

By

Alaa Mohamed Kelany Hassan (B.Sc. in Geology/Geophysics, Faculty of Science, Ain Shams University, 2011)

To

Geophysics Department Faculty of Science Ain Shams University

Supervised by

Dr. Abdullah Mahmoud El Sayed Dr. Azza Abd El-Latif El-Rawy

Associate Professor of Geophysics,
Faculty of Science,
Ain Shams University

Lecturer of Geophysics,
Faculty of Science,
Ain Shams University

Cairo - 2018

Note

The present thesis is submitted to Faculty of Science, Ain Shams University in partial fulfillment for the requirements of the Master degree of Science in Geophysics.

Beside the research work materialized in this thesis, the candidate has attended ten post-graduate courses for one year in the following topics:

- 1) Geophysical Field Measurements.
- 2) Numerical Analysis and Computer Programming.
- 3) Petrophysical Properties of Rocks.
- 4) Advanced Well Logging.
- 5) Formation Evaluation.
- 6) Reservoir Evaluation.
- 7) Surface Geology.
- 8) Geophysical Prospecting.
- 9) Sedimentary Basin Analysis.
- 10) Fluid Dynamics.

He successfully passed the final examinations in these courses. In fulfillment of the language requirement of the degree, he also passed the final examination of a course in the English language.

Head of Geophysics Department

Prof. Dr. Said Abd El Maaboud Aly

Acknowledgment

Fist and forever thanks to Allah who guided me to bring this thesis to the light and for all that I have been given.

I wish to express my deep and grateful thanks to Prof. Dr. Abdullah Mahmoud El Sayed Mahmuod, Associate Professor of Geophysics, Geophysics Department, Faculty of Science, Ain Shams University, for supervising and valuable comments in this work, reading and reviewing the manuscripts.

I would like to express my sincere thanks to Dr. Azza Mahmoud Abd El-Latif El-Rawy, Lecturer of Geophysics, Geophysics Department, Faculty of Science, Ain Shams University, for supervising and valuable comments in this work, reading and reviewing the manuscripts.

I am unaware of words meaningful enough to adequately express the deep sense of gratitude that I wish to convey to my family for their patience, fortitude and understanding. Their love and devotion kept me going and I am extremely grateful to them for their encouragement and support.

Abstract

The off-shore Nile Delta is one of the most promising areas for gas exploration and production in Egypt and the Middle East. The present study deals with evaluation of the gas-bearing sand intervals at the off-shore Nile Delta of Egypt using the available geological and geophysical datasets.

The data set comprise logs of 4 wells and 25 seismic lines that are selected from 3D seismic cube. The well logs also including pressure measurement and one well contains geochemical analysis data.

The available data are analyzed to understand the structural configuration of the studied area using the seismic lines to study the possible reasons behind the dryness of some wells and for determining the different petrophysical and geochemical parameters that necessary for reservoir and source rocks evaluation, focusing on The middle to late Miocene sediments (Wakar and Sidi Salim Formations)

This study reveals the presence of multi gas-bearing sand zones in Wakar S1 level and Sidi Salim Formation, with good hydrocarbon potential, encountered at different depth levels. The comprehensive petrophysical analysis of these zones show that S1 level attains good reservoir parameters in all wells except in PFM S-1 well which is dry, while S2 and S3 levels are either shaled out or water bearing in the study area. However, Wakar S1 level exhibits unique characteristics; in terms of the good porosity (18 to 30%), low shale volume (Vsh<10%) and high gas potentiality (40 to 92%), which it attains.

The analysis of pressure data is concerned mainly with locating the different fluid contacts, determining the pressure gradients of the gas-bearing zones, and detecting the different hydrocarbon densities. Pressure gradient ranges of 0.091 to 0.325 psi/ft are indicated for Wakar S1 level.

The analysis of geochemical data reveals that both Wakar and Sidi Salim Formations are immature fair potential source rocks with poor generating capability throughout the area of study, however the high gas potentiality of Wakar Formation which proved that the hydrocarbon accumulation is due to the biogenic activities that accompanied by deltaic environments.

Key words:

Wakar Formation, Port Fouad, PFM SE-1, Well Logs, Pressure Analysis, 1D Basin Modeling

Contents

Subject	
Acknowledgement	
Abstract	
List of Contents	i
List of Figures	vii
List of Tables	xii
List of Contents	
	Page
Chapter One: Introduction	
1.1 Location of the Study Area	1
1.2 Exploration History	2
1.3 Aim of Study	4
1.4 Available Data	5
1.5 Methodology and Techniques	6
Chapter Two: Regional Geologic Setting	
2.1 Introduction	7
2.2 Geology of the Nile Delta	8
2.3 Regional Stratigraphy of the Nile Delta	11

12

2.3.1 Basement Rocks

	2.3.2 Paleozoic Period	13
	2.3.3 Mesozoic Period	13
	2.3.3.1 Triassic	14
	2.3.3.2 Jurassic	14
	2.3.3.3 Cretaceous	14
	2.3.4 Cenozoic Period	15
	2.3.4.1 Paleogene	15
	2.3.4.1.1 Paleocene	16
	2.3.4.1.2 Eocene	16
	2.3.4.1.3 Oligocene	16
	2.3.4.2 Neogene	17
	2.3.4.2.1 Miocene	20
	2.3.4.2.2 Pliocene	31
	2.3.4.3 Quaternary	34
2.4	Structural Framework of the Nile Delta	36
	2.4.1 NW-SE Temsah Fault Trend	40
	2.4.2 NE-SW Rosetta Fault Trend	41
	2.4.3 East-West Coastal Fault Trends	41
	2.4.4 Minor Fault Trends	42
2.5	Structural Evolution of the Study Area	43
2.6	Tectonic History of Offshore Nile Delta	49

2.6.1 Cratonic Sag Stage	49
2.6.2 Rift Stage	50
2.6.3 Passive Margin Stage	52
2.6.4 Syrian Arc Stage	52
2.6.5 Gulf Rifting and Red Sea Opening Stage	53
2.6.6 Messinian Crisis	53
2.6.7 Pliocene-Pleistocene Delta Progradation	54
Chapter Three: Seismic Data Interpretation	
3.1 Introduction	55
3.2 History of Seismic Activities in the Nile Delta	57
3.3 Seismic Data and Techniques	57
3.4 Quality of Seismic Data	59
3.4.1 Non-Continuity of Horizons	60
3.4.2 Cut-off Features	61
3.4.3 Thick Shale Masses	61
3.4.4 Well Velocity Survey	61
3.4.4.1 Check-shot Survey	62
3.5 Seismic Data Interpretation	62
3.5.1 Seismic Data Interpretation Technique	63
3.5.2 Seismic Data Interpretation Output	65

3.5.2.1 Interpretation of Seismic Sections	66
3.5.2.2 Interpretation of Seismic Maps	70
3.5.2.2.1 Time Structure Contour Map on the Top of	72
Wakar Formation	
3.5.2.2.2 Average Velocity Map on the Top of Wakar	73
Formation	
3.5.2.2.3 Depth Structure Contour Map on the Top of	75
Wakar Formation	
Chapter Four: Petrophysical Analysis	
4.1 Introduction	78
4.2 Material and Methods	79
4.3 Petrophysical Properties Evaluation	80
4.3.1 Pre-Computations	81
4.3.1.1 TVD and TVDSS	81
4.3.1.2 Geothermal and Pressure Gradients	83
4.3.1.3 Hydrocarbon Properties	86
4.3.1.4 Water Resistivity Determination (Rw)	88
4.3.2 Quantitative Formation Evaluation	91
4.3.2.1 Shale Volume Determination	92
4.3.2.2 Determination of Formation Porosity (ϕ)	94
4.3.2.2.1 Sonic Porosity ϕ_s	96

4.3.2.2.2 Neutron-Density Porosity ϕ_{ND}	97
4.3.2.3 Determination of Water Saturation S_w	98
4.3.2.4 Reservoir Lithology Identification	100
4.3.2.5 Reservoir Summary	102
4.3.2.5.1 PFM-6 Well	103
4.3.2.5.2 PFM SW-1 Well	104
4.3.2.5.3 PFM SE-1 Well	106
4.3.2.5.4 PFM S-1 Well	108
4.3.2.6 Iso-Parameteric Maps	110
4.4 Conclusion	111
Chapter Five: Reservoir Pressure Analysis	
5.1 Introduction	113
5.2 Materials and Methods	116
5.3 Pressure Data Analysis	123
5.3.1 Calculation of Hydrostatic Pressure	124
5.3.2 Evaluation of Formation Permeability (Mobility)	125
5.3.3 The Pressure/Depth Plots	126
5.3.3.1 PFM SW-1	127
5.3.3.2 PFM-6	129
5.3.3.3 PFM SE-1	131
5.3.3.4 PFM S-1	133

5.4 Conclusion	134
Chapter Six: Petroleum System Analysis	
6.1 Introduction	136
6.2 Materials and Methods	137
6.3 Source Rock Evaluation	138
6.3.1 Total Organic Carbon (TOC)	139
6.3.2 Rock-Eval Pyrolysis Analysis (Type of Kerogen)	140
6.3.3 Maturity and Generating Capability	141
6.4 Results and Discussion	143
6.4.1 Wakar Formation (Tortonian)	143
6.4.2 Sidi Salim Formation (Langhian-Serravallian)	144
6.5 Burial History (1D Basin Modeling)	145
6.5.1 Missing Sections Estimation	146
6.5.2 Main Tectonic Events	147
6.5.3 Modeling	149
6.5.4 Petroleum System Chart	151
Summary and Conclusion	153
References	156
Arabic Summary	167

List of Figures

		Page
Figure 1.1:	Location map of the study area.	1
Figure 2.1:	Main structural features of northern Egypt and the eastern	8
	Mediterranean Sea. The lower diagram shows a schematic cross	
	section along the line indicated in the map (Schlumberger, 1984).	
Figure 2.2:	Generalized stratigraphic column of the offshore North-eastern part	11
	of the Nile Delta (Badri et al., 2000).	
Figure 2.3:	Isopach contour map of the late Cretaceous in Nile Delta (after	15
	Zaghloul et al., 1999).	
Figure 2.4:	Structure contour map on the top of Oligocene in Nile Delta (after	17
	Zaghloul et al., 1999).	
Figure 2.5:	Early Miocene facies and thicknesses from the Cairo-Suez District	21
	(after Harms and Wray, 1990).	
Figure 2.6:	Structure contour map on top of the middle Miocene in Nile Delta	23
	(after Zaghloul et al., 1999).	
Figure 2.7:	Isopach Contour Map of the middle Miocene in the Nile Delta (after	24
	Zaghloul et al., 1999).	
Figure 2.8:	Late Miocene (Messinian) facies and total late Miocene thicknesses	27
	(after Harms and Wray, 1990).	
Figure 2.9:	Structure contour map on top of the late Miocene in the Nile Delta	28
	(redrawn after Zaghloul et al., 1999).	
Figure 2.10:	Schematic block diagram illustrating the late Miocene (Messinian)	29
	canyon, canyon front, and turbidite depositional settings of the Nile	
	Delta area (Aal et al., 2001).	

Figure 2.11:	Structure contour map on top of Kafr El Sheikh Formation (after	32
	Zaghloul et al., 1999).	
Figure 2.12:	Structure contour map on top of El-Wastani Formation (after	34
	Zaghloul et al., 1999).	
Figure 2.13:	The flexure zone that separates between North and the southern	37
	provinces of the Nile Delta (after EGPC, 1994).	
Figure 2.14:	Regional structural setting, north Nile Delta.	43
Figure 2.15:	Sketch showing a well-developed growth fault and accompanying	44
	structures.	
Figure 2.16:	Sketch showing evolution stages of three growth faults, the black	46
	arrow shows the direction of evolution.	
Figure 2.17:	Tectonstratigraphy column of the Nile Delta.	51
Figure 2.18:	Interpreted distribution of crustal type and key basement fabric	51
	within the East Mediterranean Basin (EMB) (after Longacre et al.,	
	2007).	
Figure 3.1:	The shot points location map of the study area.	58
Figure 3.2:	Interpreted seismic section (L_3766).	67
Figure 3.3:	Interpreted seismic section (T_10586).	68
Figure 3.4:	Interpreted arbitary seismic line.	69
Figure 3.5:	TWT map of top Wakar.	72
Figure 3.6:	Time-Depth curves at the study area.	74
Figure 3.7:	Average velocity map of top Wakar.	74
Figure 3.8:	Depth structural contour map of top Wakar.	75
Figure 4.1:	Location map show the distribution of the studied wells.	79
Figure 4.2:	Illustration of the radius of curvature method and the used equations	81
	in TVD computations.	
Figure 4.3:	Illustration of PFM-6 well path including MD and TVDSS.	82

Figure 4.4:	Illustration of PFM SW-1 well path including MD and TVDSS.	83
Figure 4.5:	Illustration of the geothermal gradient through the area of study.	85
Figure 4.6:	Gas effect in neutron-density logs.	86
Figure 4.7:	Elimination of Gas effect in neutron-density logs.	87
Figure 4.8:	Schematic diagram shows the Pickett plot method.	88
Figure 4.9:	Rw values of Wakar Formation.	89
Figure 4.10:	Rw values of Sidi Salim Formation.	90
Figure 4.11:	Different types of shale distribution.	92
Figure 4.12:	Reservoir attitude during drilling.	99
Figure 4.13:	Multi wells Neutron-Density cross plot through the study area of	101
	Wakar Formation.	
Figure 4.14:	Multi wells Neutron-Density cross plot through the study area of	102
	Sidi Salim Formation.	
Figure 4.15:	Wakar levels and Sidi Salim Formation in study area.	103
Figure 4.16:	Static model of PFM-6 (Wakar Fm).	104
Figure 4.17:	Static model of PFM SW-1 (Wakar S1 level).	105
Figure 4.18:	Static model of PFM SW-1 (Wakar S2 and S3 levels).	106
Figure 4.19:	Petrophysical data log of PFM SE-1 (Wakar S1 level).	107
Figure 4.20:	Petrophysical data log of PFM SE-1 (Sidi Salim Formation).	108
Figure 4.21:	Petrophysical data log of PFM S-1 (Wakar S1 level).	108
Figure 4.22:	Petrophysical data log of PFM S-1 (Sidi Salim Formation).	109
Figure 4.23:	The net pay sand lateral distribution map of S1 level in the study	111
	area.	
Figure 4.24:	The effective porosity lateral distribution map of S1 level in the	111
	study area.	
Figure 4.25:	The water saturation lateral distribution map of S1 level in the study	111
	area.	
Figure 5 1.	The drillstem test (DST)	11/