Role of 18- F FDG-PET/CT in the assessment of primary hepatic neoplasm (Heptocellular carcinoma HCC) after hepatic intervention.

Thesis
Submitted for partial fulfillment of MD. Degree in Radiodiagnosis

 $\mathcal{B}y$

Mohamed Ibrahim Mahmoud Ali

MSC. of Radiodiagnosis
Cairo University

Supervised by

Prof. Amr Osama M. A. Azab, MD

Professor of Radiodiagnosis

Faculty of medicine

Cairo University

Prof. Sherief Mohamed El-Refaei

Professor of Nuclear Medicine Faculty of medicine Cairo University

Dr. Mohamed Mohamed Houseni, MD

Lecturer of Radiology National Liver Institute Faculty of medicine Menofeya University

Faculty of Medicine Cairo University

2015

Abstract

Keyword :-(HCC- PET/CT- FDG- SUV)

The tumor thrombus differentiates itself from blood thrombus by its intense FDG uptake as result of its high metabolic neoplastic activity. Delayed PET images (2-3 hours) are useful in assessing disease residue or recurrence with progressive tracer accumulation in the lesion and calculation of retention index PET/CT was more sensitive than conventional CT in detecting extra hepatic metastatic disease based on their metabolic activity & it provide whole body assessment in single examination Our findings showed that the combination of good anatomical resolution and the metabolic data offered by PET/CT can exclude the presence of extra hepatic disease that affects the tumor stage and the intervention procedure.

<u>Acknowledgement</u>

First of all and above all great thanks to Allah.

I would like to express my deepest gratitude and thanks to Prof. **Dr. Loai Ezzat** who had the privilege and vision of early implementation of 1st PET/CT (after the limited experience of PET imaging by the Military IC) and since then this technology is getting more and more expanding.

Words could not express my great appreciation, thanks and respect to **Dr.Mohamed Houseni** Lecturer of Radiodiagnosis, National liver institute Menoufeya University, for her patience, care and concern throughout this work.

I would like to express my deepest gratitude and thanks to Prof. Dr. Amr Osama Professor of Radiodiagnosis, Faculty of medicine. Cairo University L Prof. Dr. Sherief El-Refaei, Professor of Nuclear medicine, Faculty of medicine. Cairo University, for giving me the honour of being their candidate, working under their supervision, guided by their experience and precious advices and true concern.

Last, but not least, I would like to express my respect, appreciation and thanks to my wife, my family, and my colleagues.

Dedication:

I dedicate this work to My Wife.

My family.

My professors & My Colleagues.

For their help and assistance
Thanks for all of you

Index of contents

SUBJECT	PAGE
I. Introduction and aim of work	1
II. Review of literature	
1- Physical background & Technical aspects of PET/CT	4
2- Pathology of HCC	23
3- PET imaging of the liver	35
4- Liver imaging after local therapy.	43
III. Patients and methods	63
IV. Results	73
V. Discussion	86
VI. Case Presentation	95
VII. Summary and Conclusion	113
VIII. References	115
IX. Arabic Summary	122

List of figures

LIST OF FIGURES

Figure no.		<u>Page</u>
Figure (1):	Schematic diagram of positron annihilation.	8
Figure (2):	PET detectors.	12
Figure (3):	Block detector illustrating the quadrant sharing of PM tubes.	13
Figure (4):	Schematic diagram of a photomultiplier tube and a photograph of a	14
	hexagonal 6 cm-diameter tube.	
Figure (5):	Types of coincidence events.	17
Figure (6):	2D & 3D imaging without lead septa between rings of detectors.	18
Figure (7):	The physics of PET attenuation and a procedure for correction of the	20
	attenuation effect.	
Figure (8):	Coronal view through a whole-body FDG PET image before and after	21
	attenuation correction.	
Figure (9):	Images reconstructed from the same raw data reconstructed with	22
	filtered back-projection (FBP) and ordered subsets expectation	
	maximization (OSEM).	
Figure (10):	Clear cell type HCC, CT image, gross specimen & microscopic	25
	specimen.	

List of figures

Figure (11):	Fibrolamellar HCC, CT image, gross specimen & microscopic	
	specimen.	26
Figure (12):	Sarcomatoid HCC, CT image, gross specimen & microscopic	
	specimen.	27
Figure (13):	Combined HCC and cholangiocarcinoma, CT image, gross specimen	28
	& microscopic specimen.	
Figure (14):	Sclerosing HCC, CT images & microscopic specimen.	29
Figure (15):	Axial non contrast CT of the liver, axial, sagittal & coronal fused	36
	PET/CT images showing non uniform tracer distribution in the liver	
	parenchyma.	
Figure (16):	axial CT & PET/CT images of patient with a large well differentiated	40
	HCC lesion in the right liver lobe	
Figure (17):	Axial non-contrast CT-scan, 18FDG PET image & axial PET/CT	41
	fusion image showing HCC.	
Figure (18):	Axial image of the FDG PET at 90 minutes & 120 minutes delayed	42
	scan image with progressive tracer accumulation in the lesions.	
Figure (19):	Axial fused FDG PET/CT image reveals solitary FDG-avid lesion in	51
	right lobe of liver & Axial fused FDG PET/CT image obtained 1	
	month after RFA reveals no FDG uptake in ablation zone.	

List of figures

Figure (20):	Patient with hepatic focal lesion underwent RF ablation. Axial PET	52
	and fused PET/CT images show complete photopenia at the ablated	
	site with low-grade homogeneous and uniform distribution of FDG in	
	the surrounding area representing peri ablation hyperemia.	
Figure (21):	Patient with HCC received combined RFA and TACE treatment.	55
Figure (22):	Nine-month post ablation PET image reveals FDG-avid focus	57
	eccentric to ablation zone. Contrast-enhanced CT image reveals	
	enhancing soft-tissue nodule corresponding to FDG-avid focus seen	
	eccentric to ablation zone.	
Figure (23):	Four types of accumulation patterns of iodized oil on CT after	59
	transcatheter arterial chemoembolization	
Figure (24):	Patient with HCC treated with TACE	61
Figure (25):	Patient with non viable lipiodolized HCC. Attenuation-corrected18F-FDG PET/CT images, non corrected 18F-FDGPET image.	62
Figure (26):	Association between the true local residue/recurrence, detection of local residue/recurrence by CECT & PET.	77
Figure (27):	Association between the true local residue/recurrence, detection of	77
	local residue/recurrence by CECT, PET and combined PET/CT.	
Figure (28):	Diagnostic indices (sensitivity, specificity, PPV, NPV and accuracy) of	78
	CECT & PET for detection of local disease recurrence/residue at the intervention bed in the studied group.	
	mer renden dea in the station group.	

List of figures		
Figure (29):	Association between the true satellites & detection of satellite lesions	79
	by CECT and PET.	
Figure (30):	Diagnostic indices (sensitivity, specificity, PPV, NPV and accuracy) of	80
	CECT & PET for satellite in the studied group.	
Figure (31):	Diagnostic indices (sensitivity, specificity, PPV, NPV and accuracy) of CECT & PET in detection of tumoral portal vein thrombosis.	81
Figure (32):	Diagnostic indices (sensitivity, specificity, PPV, NPV and accuracy) of	82
	CECT & PET in detection of metastatic lymphadenopathy.	
Figure (33):	Diagnostic indices (sensitivity, specificity, PPV, NPV and accuracy) of	84
	CECT & PET in detection of bone deposits.	
Figure (34):	AFP in the studied group.	84
Figure (35):	Case no. 1.	96
Figure (36):	Case no. 2.	98
Figure (37):	Case no. 3.	100
Figure (38):	Case no. 4.	108
Figure (39):	Case no. 5.	104
Figure (40):	Case no. 6.	105
Figure (41):	Case no. 7.	106
Figure (42):	Case no. 8.	107
Figure (43):	Case no. 9.	109

List oj	f figures	
Figure (44):	Case no. 10.	111
Figure (45):	Case no. 10.	111
Figure (46):	Case no. 10.	112

List of Tables

LIST OF TABLES

Table no.		Page
Table (1):	List of Radionuclides that decay by positron emission and are relevant	6
	to PET Imaging	
Table (2):	Requirements for PET detector material	10
Table (3):	Principal detector materials that have been used in PET	10
Table (4):	DWI characteristic of treated hepatocellular carcinoma	46
Table (5):	Demographic features of the studied group	74
Table (6):	Types of intervention in the studied group	75
Table (7):	Diagnostic indices (sensitivity, specificity, PPV, NPV and efficacy) of	78
	CT & PET at the intervention bed in the studied group	
Table (8):	Diagnostic indices (sensitivity, specificity, PPV, NPV and accuracy) of	80
	CT & PET of satellite lesions in the studied group	
Table (9):	AFP in the studied group	84
Table (10):	Associated findings in the studied group	85

List of Abbreviations

LIST OF ABBREVIATIONS

ACD: Annihilation Coincidence Detection

ACC: Accuracy

ADC: Apparent Diffusion Coefficient

AFP: Alfa fetoprotein

APD: Avalanche Photodiode

BaF: Barium Fluoride

BGO: Bismuth Germinate

CE-CT: Contrast enhanced Computed tomography

CI: Confidence Interval

CT: Computed tomography

DWI: Diffusion weighted imaging

E: Energy

18F: Fluorine 18

FBP: Filtered Back Projection

FDG: Fluorodeoxyglucose

FLLs: Focal Liver Lesions

FN: False Negative

FP: False Positive

List of Abbreviations

GSO: Gadolinium Orthosilicate

HCC: Hepatocellular Carcinoma

KBq: Kilobecquerel

Kg: Kilogram

La Br: Lanthanum Bromide

LOR: Line of Response

LSO: Lutetium Orthosilicate

Max: Maximum

MBq: Megabecquerel

MDCT: Multi-detector Computed tomography

MEV: Million Electron Volt

MRI: Magnetic Resonance Imaging

N: Neutrons

NaI (Tl): Sodium iodide with thallium doping

NPV: Negative Predictive Value

OSEM: Ordered Subsets Expectation Maximization

PET: Positron Emission Tomography

PPV: Positive Predictive Value

P+: Protons

List of Abbreviations

RF: Radiofrequency

ROI: Region of Interest

SEN: Sensitivity

SEP: Specificity

SUV: Standard Uptake Value

TACE: Trans-arterial chemoembolization

TN: True Negative

TOF: Time of Flight

TP: True Positive

VOI: Volume of Interest

V: neutrino

 β +: Positron

2D: 2 Dimensional

3D: 3 Dimensional

Introduction

Hepatocellular carcinoma (HCC) is the cause of 250,000 deaths worldwide each year. Early HCC is typically clinically silent, and the disease is often well advanced at the first manifestation. (*Clark et al*, 2005)

Complete surgical resection and hepatic transplantation offer the best chance of a cure for HCC. However, surgery is often precluded by extensive disease or poor hepatic functional reserve. (*Clark et al, 2005*)

Several minimally invasive percutaneous techniques are now available to help manage localized solid neoplasms, including primary HCC. Chemical ablation involves the direct infusion into the tumor of a denaturing material such as ethanol or acetic acid. Thermal ablation involves the killing of tissue either by freezing it (as in cryoablation) or heating it (as in RF, microwave, or laser ablation). (*Clark et al, 2005*)

For many years, interventionalists have derived therapeutic advantages from the dual blood supply to the liver and the propensity for neoplasms to derive their blood supply primarily from the arterial circulation. Various protocols for pharmaceutical infusion and/or arterial embolization via catheter have been developed to help patients who are ineligible for more definitive treatment of hepatic neoplastic disease. (*Clark et al, 2005*)