

Ain Shams University Faculty of Science Chemistry Department

Chemical Studies on the Extraction of Uranium and Phosphoric Acid from the Crude Acid

A Thesis Submitted By

Romany Nabil Ammanoeil Sabet Rizk

(B.Sc. in Chemistry-Faculty of Science-Ain Shams University - 2006)

For the Partial Fulfillment of the Requirements of the Master Degree in Science (Inorganic Chemistry)

To

Chemistry Department

Faculty of Science

Ain Shams University

Ain Shams University Faculty of Science Chemistry Department

Chemical Studies on the Extraction of Uranium and Phosphoric Acid from the Crude Acid

A Thesis Submitted

For the Partial Fulfillment of the Requirements of the Master Degree in Science (Inorganic Chemistry)

Supervised By

Prof. Dr. Ebtissam A. Saad

Prof. of Inorganic and Radiochemistry, Faculty of Science, Ain-Shams University

Prof. Dr. Jacqueline A. Daoud

Prof. of Radio-Inorganic Chemistry, Hot Laboratories Centre, Atomic Energy Authority

Dr. Ismail M. Ahmed

Assistant Prof. of Inorganic chemistry,
Hot Laboratories Centre,
Atomic Energy Authority

Faculty of Science Chemistry Department Approval Sheet for Submission

Chemical studies on the extraction of uranium and phosphoric acid from the crude acid

A Thesis Submitted

For the Partial Fulfillment of the Requirements of the Master Degree in Science (Inorganic Chemistry)

Romany Nabil Ammanoeil Sabet Rizk

(B.Sc. in Chemistry-Faculty of Science-Ain Shams University - 2006)

This thesis has been approved by Supervisor Committee:

Prof. Dr. Ebtissam A. Saad

Prof. of Inorganic and Radiochemistry, Faculty of Science, Ain-Shams University

Prof. Dr. Jacqueline A. Daoud

Prof. of Radio-Inorganic Chemistry, Hot Laboratories Centre, Atomic Energy Authority

Dr. Ismail M. Ahmed

Ass. Prof. of Inorganic chemistry, Hot Laboratories Centre, Atomic Energy Authority

This thesis for M.SC. Degree has been approved by:

Prof. Dr. Hatem El Taei Adel Rahman El Batal

Prof. of Inorganic Chemistry, National Research Centre

Prof. Dr. Nagia Abdelhameed El Alaily

Prof. of Radiation chemistry, National Center for Radiation Research and Technology

Prof. Dr. Ebtissam A. Saad

Prof. of Inorganic and Radiochemistry, Faculty of Science, Ain-Shams University

Prof. Dr. Jacqueline A. Daoud

Prof. of Radio-Inorganic Chemistry, Hot Laboratories Centre, Atomic Energy Authority

Date of Examination: / / 2018

Head of Chemistry Department

Prof. Dr: Ibrahim H. Badr

Acknowledgement

I am deeply indebted to **Prof. Dr. Ebtissam A. Saad** Professor of Inorganic and Radiochemistry, Faculty of Science, Ain Shams University; for suggesting the point of research, her continuous support, guidance and valuable discussion through the progress of this thesis.

I would like to express my sincere gratitude and indebtedness to **Prof. Dr. Jacqueline A. Daoud,** Prof. of Radio-Inorganic Chemistry, Hot Laboratories Centre, Atomic Energy Authority; for her supervision, kind help, encouragement, continuous advice and fruitful discussion throughout this work.

I wish also, to acknowledge my sincere gratitude to **Dr. Ismail M. Ahmed**, Assistant Prof of Inorganic Chemistry, Hot Laboratories Centre, Atomic Energy Authority; for his supervision, generous guidance and continuous help specially during the experimental work of this thesis.

Finally, my great and deep gratitude to my family, friends, my colleagues in the laboratory and for all people who helped me to finish this work.

CONTENTS

	Page
Acknowledgment	i
List of contents	ii
Lists of Tables	iv
List of Figures	\mathbf{v}
Abstract	vi
CHAPTER 1: <u>INTRODUCTION</u>	1
1.1. GENERAL	1
1.2. PRODUCTION OF PHOSPHORIC ACID	1
1.2.1. Furnance Process	1
1.2.2. Wet process	2
1.2.2.1. Wet process with sulfuric acid	2
1.2.2.2. Wet process with nitric acid	5
1.2.2.3. Wet process with hydrochloric acid	6
1.2.3. Chemistry of phosphoric acid	6
1.3. URANIUM IN PHOSPHORIC ACID	8
1.3.1. Uses of Uranium	8
1.3.2. Recovery of Uranium from Phosphoric Acid	8
1.3.3. Uranium in Phosphate Rocks	9
1.3.4. Chemistry of Uranium	11
1.3.4.1. Binary compounds	12
1.3.4.2. Uranates	12
1.3.4.3. Uranium halides and their adducts	13
1.4. LITERATURE SURVEY	19
1.4.1. Extraction of Phosphoric Acid	19
1.4.2. Purification of Phosphoric Acid	23
1.4.3. Extraction of Uranium from Phosphoric Acid	24
CHAPTER 2: EXPERIMENTAL	38
2.1. CHEMICALS AND REAGENTS	38
2.1.1. Extractants and Diluents	38
2.2. INSTRUMENTS	41
2.3. PROCEDURES	44
CHAPTER 3: RESULTS AND DISCUSSION	48
3.1. EXTRACTION OF PHOSPHORIC ACID	49
3.1.1. Extraction of 7M Phosphoric Acid with	51
CYANEX 923 in Kerosene	
3.1.1.1. Effect of shaking time	51
3.1.1.2. Effect of extractant concentration	51
3.1.1.3. Effect of phosphoric acid concentration	54
3.1.1.4.Extraction Equilibrium	54
3.1.1.5. Effect of temperature	56

3.1.1.6. Effect of organic/aqueous (O/A) phase	56
ratio	
3.1.1.7. Stripping of phosphoric acid	56
3.1.2. Extraction of Phosphoric acid with TBP	59
3.1.2.1. Effect of shaking time	59
3.1.2.2.Effect of extractant concentration	59
3.1.2.3. Effect of initial phosphoric acid concentration	59
3.1.2.4.Extraction equilibrium	63
3.1.2.5. Effect of temperature	63
3.1.2.6. Effect of organic/aqueous (O/A) phase ratio	63
3.1.2.7. Stripping of phosphoric acid	65
3.2. EXTRACTION OF URANIUM	67
3.2.1. Extraction of U(VI) from 7M Phosphoric Acid	67
with CYANEX 923 in Kerosene	0.
3.2.1.1. Effect of shaking time	67
3.2.1.2. Effect of CYANEX 923 concentration	67
3.2.1.3. Effect of phosphoric acid concentration	70
3.2.1.4. Effect of initial uranium concentration	70
3.2.1.5. Stripping of uranium	70
3.3.APPLICATION STUDIES	73
3.3.1. Purification of the Crude Phosphoric Acid	73
3.3.1.1. Removal of Fe and uranium from high	73
phosphoric acid concentration using expanded	
Perlite	
3.3.1.1.1. Effect of expanded Perlite dose	74
3.3.1.1.2. Adsorption isotherm of expanded Perlite	75
3.3.1.1.3. Removal of fluoride by sodium chloride	79
3.3.2. Extraction of Phosphoric Acid from Leached	81
Apatite Ore	01
3.4. CONCLUSIONS	83
SUMMARY	84
CHAPTER 4: REFERENCES	90
Arabic Summary	1

LIST OF TABLES

	Page
Table (1): Uranium Content of Selected World Phosphate rocks	10
Table (2): Uranium Halides	13
Table (3): The used Chemicals	39
Table (4): The extractants and diluents used	40
Table (5): Chemical analysis of the apatite ore.	46
Table (6): Extraction of phosphoric acid with different extractants	50
Table (7): Effect of temperature on the extraction of 7M phosphoric acid with 1.18 M CYANEX 923 in kerosene at O/A = 2:1	57
Table (8): Effect of phase ratio O/A on the extraction of 7 M H ₃ PO ₄ with 1.18 M CYANEX 923 in kerosene.	57
Table (9): Effect of phase ratio O/A on the extraction efficiency of 7 M H ₃ PO ₄ by 3.66 M TBP.	64
Table (10): Optimum Conditions for Extraction of 7M Phosphoric Acid	66
Table (11): The main components of expanded Perlite	74
Table (12): Extraction of U(VI) from crude phosphoric acid with different organophosphorus extractants	80

LIST OF FIGURES

	Page
Fig.(1): Effect of temperature on calcium sulphate crystallization.	3
Fig.(2): Some representative of UO_2^{2+} complex structures. (a) $[UO_2(acetamidoxime)_4]^{2+}$, (b) $[UO_2(DMSO)_4]^{2+}$, and (c) $UO_2(NO_3)_2(Ph_3PO)_2$.	17
Fig.(3): Inductively coupled plasma (ICP)	42
Fig.(4): Fluoride selective electrode	42
Fig.(5): Centrifuge Rotofix 32A	43
Fig.(6): Thermo Scientific ARL-9900 X-ray fluorescence	47
Fig.(7): Effect of shaking time on the extraction of 7 M H ₃ PO ₄ with CYANEX 923 in kerosene.	52
Fig. (8): Effect of CYANEX 923 concentration on the extraction of 7 M H ₃ PO ₄ .	53
Fig.(9): Effect of phosphoric acid concentration on its extraction with CYANEX 923 in kerosene.	55
Fig.(10): Effect of temperature on the extraction of 7M H ₃ PO ₄ with CYANEX 923 in kerosene.	58
Fig. (11): Effect of shaking time on the extraction of 7 M H ₃ PO ₄ with TBP.	60
Fig.(12): Effect of TBP concentration on the extraction of 7 M H ₃ PO ₄ .	61
Fig.(13): Effect of initial phosphoric acid concentration on its extraction with TBP.	62
Fig.(14): Effect of Temperature on the extraction of 7 M H ₃ PO ₄ with TBP.	64
Fig. (15): Effect of shaking time on the extraction of U(VI) from 7 M H ₃ PO ₄ with CYANEX 923 in kerosene.	68
Fig.(16): Effect of CYANEX 923 concentration on the extraction of U(VI) from 7 M H ₃ PO ₄ .	69

	Page
Fig.(17): Effect of phosphoric acid on the extraction of U(VI) with CYANEX 923 in kerosene.	71
Fig.(18): Effect of initial uranium concentration on its extraction from 7 M H ₃ PO ₄ with CYANEX 923 in kerosene.	72
Fig.(19): Effect of perlite dose on the removal of Fe(III) and $U(VI)$ from crude phosphoric acid.	76
Fig.(20): Equilibrium adsorption isotherm for Fe(III) removal from crude Phosphoric acid by expanded Perlite	77
Fig.(21): Equilibrium adsorption isotherm for U(VI) removal from crude phosphoric acid by expanded Perlite	78
Fig.(22): Flow sheet of the recovery of phosphoric acid and uranium from apatite ore and crude phosphoric acid	82

ABSTRACT

The potential use of CYANEX 923 and TBP for the extraction of concentrated phosphoric acid has been investigated. The effects of the different parameters affecting the extraction processes, namely, the shaking time, concentration of the extractant and phosphoric as well, as phase ratio and temperature were carried out. Recovery of phosphoric acid from loaded organic solutions by different stripping agents was investigated. The optimum conditions for extraction and stripping of phosphoric acid in the investigated systems were deduced.

The potential use of CYANEX 923 for the extraction of uranium from phosphoric acid solutions was also studied. The effects of the different parameters affecting the extraction process and stripping processes of U(VI) were investigated. The optimum conditions for extraction and stripping of uranium and the possible recovery of uranium from high phosphoric media were also studied.

Application studies on the extraction of phosphoric acid from crude wet process phosphoric acid and from a leached solution of apatite phosphate rock were carried out based on the obtained experimental results. A flow sheet describing the proposed method for the recovery of phosphoric acid from the crude acid and from the phosphate rock is given and discussed.

CHAPTER 1 INTRODUCTION

1.1. GENERAL

Wet process phosphoric acid (WPPA) generally contains a number of organic and inorganic impurities that affect the grade of the acid and impart undesirable color. Different grades of purified phosphoric acid can be used on a large scale. Technical grade phosphoric acid contains $P_2O_5 = 85\%$, $Cl^- = 0.0005\%$, $SO_4 = 0.005\%$, Fe = 0.002%, As = 0.008% and heavy metals = 0.001% . On the other hand, food grade phosphoric acid contains $P_2O_5 = 85\%$, Cl = 0.0005%, $SO_4 = 0.008\%$, As = 0.001%, heavy metals = 0.001% and F = 0.001% (*Ahmed*, *2008*). Pharmaceutical grade phosphoric acid contains $P_2O_5 = 85\%$, Cl = 0.005%, $SO_4 = 0.01\%$, As = 0.00015%, heavy metals = 0.001% and Fe = 0.005%, $SO_4 = 0.01\%$, $SO_4 = 0.01\%$, $SO_4 = 0.00015\%$, heavy metals = 0.001% and $SO_4 = 0.005\%$, $SO_4 = 0.01\%$, $SO_4 = 0.00015\%$, heavy metals = 0.001% and $SO_4 = 0.005\%$

Traditionally, furnace-grade phosphoric acid or chemically wet processes acid (WPA) were used on large scale in many industrial fields. The industrial phosphoric acid produced contains uranium concentration levels of 40-120 mg/L and may be considered as a non-negligible source of uranium. (*Walters, et al., 2008*).

1.2. PRODUCTION OF PHOSPHORIC ACID

Phosphoric acid is produced by treating the fluoroapatite ore with strong mineral acids (H₂SO₄, HNO₃ or HCl), using the furnace or wet processes.

1.2.1. Furnace Process

This process depends on the production of elemental phosphorus, which is then converted to phosphoric acid (*Burt, and Barber, 1952*). The elemental phosphorus is produced by the electrothermic reduction of fluoroaptite with carbon (coke). The silica added to the furnace charge behaves as strong acid at the high temperature

(about 1500°C) and combines with the calcium constituent of the fluoroapatite to form calcium silicate. The overall reaction, when neglecting the fluoride, carbonate and other nonphosphatic constituents, may be represented as follows:

$$2Ca_{3}(PO_{4})_{2} + 6SiO_{2} + 10C \longrightarrow P_{4} + 6(CaO SiO_{2}) + 10CO$$
 (1)

Some portion of fluorine in the apatite lattice is volatilized as silicon tetrafluoride, while the majority is removed in the molten calcium silicate slag. From Eq. (2) the condensed elemental phosphorus is burned in air to form the phosphorus oxide vapor (P₄O₁₀), which reacts with water to produce phosphoric acid:

$$P_{4} \xrightarrow{\text{air}} P_{4}O_{10}$$

$$P_{4}O_{10} + 6H_{2}O \xrightarrow{} 4H_{3}PO_{4}$$
(2)

1.2.2. Wet Process

In this process, the phosphate ore is treated with strong mineral acid, H₂SO₄, HNO₃ or HCl to produce phosphoric acid.

1.2.2.1. Wet process with sulfuric acid

When phosphate rock is treated with H₂SO₄ the apatite lattice is destroyed and the apatite constituents solubilize producing phosphoric acid, in a so-called wet process (*Kirk and Othmer, 1951 & Nordengren, et al., 1955*). In this process, the tricalcium phosphate is dissolved in a phosphoric acid solution and (98%) sulfuric acid is added to precipitate calcium sulfate according to the following over all reaction:

$$Ca_3(PO_4) + 3H_2SO_4 \longrightarrow 2H_3PO_4 + 3CaSO_4$$
 (3)

(Various side reactions may occur)

Calcium sulfate and hydrogen fluoride are produced by the reaction of calcium fluoride with H₂SO₄:

$$CaF_2 + H_2SO_4 \longrightarrow 2HF + CaSO_4$$
 (4)

Carbon dioxide, calcium sulfate and water are produced when calcium carbonate reacts with H₂SO₄,

$$CaCO_3 + H_2SO_4 \longrightarrow CO_2 + CaSO_4 + H_2O$$
 (5)

Reactions (1), (2) and (3) may be represented by the following reaction:

$$Ca_{10}(PO_4)_6F_2CaCO_3 + 11H_2SO_4 + x(11H_2O)$$

$$6H_3PO_4 + 11CaSO_4.xH_2O + 2HF + CO_2 + H_2O$$

Different calcium sulfate salts are formed, depending on the process conditions such as the acid concentration and the temperature; in this respect, either calcium sulfate hemihydrate (x = 1/2, HH), dihydrate (x = 2, DH) or anhydrite (x = -0, AH) is formed. Fig.(1) shows the effect of reaction conditions on the formation of calcium sulfate species.

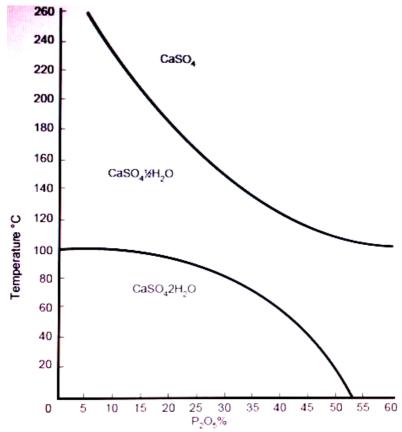


Fig.(1): Effect of temperature on calcium sulphate crystallization.

Silica may react with hydrogen fluoride produced to form silicon tetrafluoride, which then hydrolyses to form fluorosilic acid which may react with any sodium fluorosilicate;

$$4HF + SiO_2 \longrightarrow SiF_4 + 2H_2O$$
 (6)

$$3SiF_4 + 2H_2O \longrightarrow 2H_2SiF_6 + SiO_2$$
 (7)

$$H_2SiF_6 + 2Na \longrightarrow NaSiF_6 + 2H^+$$
 (8)

In Anhydrite process (AH), the phosphate rock was allowed to react with 98% sulfuric acid and the resulting acidified solution was heated for about 30 min. at 200 to 240°C. In some cases, the digestion was carried out under pressure at elevated temperature, about the boiling point, to give an acid containing 40 to 51 % P₂O₅.

Corrosion and filtration difficulties were the major problems of this process (Liljenroth, 1928 & Piombino, 1964). In producing high phosphoric acid concentration, the rock is dispersed into a premixed slurry, the filtrate from washing of CaSO₄.5H₂O filter in the subsequent stage is mixed with H₃PO₄ to prepare a circulation acid that is mixed with H₂SO₄ to produce a mixed acid containing < 60-wt % H₂SO₄. The mixed acid is used for decomposition of phosphate rock. Thus phosphate rock (668 kg/h) was decomposed with mixed acid and filtrate to produce cake (1235 kg/h) and H₃PO₄ (400kg/h) containing 52% P₂O₅ and 1.3% H₂SO₄. Phosphoric acid is produced from phosphate rock containing carbonates by treating the rock with recycled H₃PO₄ from CaSO₄ filtration (Smalter, 1963). The Hemihydrate process (HH) (Nielsson and Yates, 1953) offers the potential advantage over the dihydrate of producing acid of 38-42 % P₂O₅ which may be directly used in diammonium phosphate manufacture and would also requires only one evaporation stage for concentration to 54% merchant-grade phosphoric acid and the digestion step is carried out at 100°C;

$$Ca_3(PO_4)_2 + 3H_2SO_4 \xrightarrow{100^{\circ}C} 2H_3PO_4 + 3CaSO_4.1/2H_2O$$
 (9)

The Dihydrate process (DH) operates at $78-80^{\circ}$ C and 28-30% P_2O_5 acid concentration to promote the formation of calcium sulfate in the dihydrate forms;

$$Ca_3(PO_4)_2 + 3H_3PO_4 \xrightarrow{78-80^{\circ}C} 2H_3PO_4 + 3CaSO_4.2H_2O$$
 (10)

Sulfuric acid is mixed with phosphoric acid (18-22% P₂O₅) and recycled reaction slurry, then the dry ground phosphate rock is added in a slightly less than the stoichiometric proportion to maintain a slight excess system where temperature and acid concentration are carefully controlled to ensure good crystal formation and completeness of reaction. A high recycle ratio is maintained, i.e. 20 parts of slurry are recycled through the system for every one part pumped to the filter. The reaction slurry is separated on the filter and a 3 stages counter current wash of the calcium sulfate cake takes place. The 19% P₂O₅ acid is returned to the reactor for control purpose. The calcium sulfate cake is slurried up and pumped away. The 28- 30% P₂O₅ acid is pumped to intermediate storage. 28-30%P₂O₅ isconcentrated to 52% by vacuum evaporation and pumped to final storage.

The Hemihydrate- Dihydrate process (HDH) (*Larsson*, 1933 & *Liljenroth*, 1928 & *Piombino*, 1964; Organization for European Economic, 1953) involves precipitation of calcium sulfate in the hemihyhrate form followed by recrystallization to dihydrate. This process produced large, well-formed dihydrate crystals and it was claimed that phosphate substituted in the calcium sulfate lattice was released and dissolved during recrystallization.

1.2.2.2. Wet process with nitric acid

In this process, the phosphate ore is treated with (56%) nitric acid solution (*Nielsson and Yates*, 1953). The phosphate ore is decomposed to monocalcium phosphate salt according to the equation;

$$3\text{CaO. P}_2\text{O}_5 + 4\text{HNO}_3 \longrightarrow \text{Ca} (\text{H}_2\text{PO}_4)_2 + 2\text{Ca}(\text{NO}_3)_2$$
 (11)