

Ain Shams University Faculty of Engineering Engineering Physics and Mathematics Department

Modeling Vehicle Handling Dynamics to Support Advanced Driver Assisting Systems (ADAS)

A Thesis Submitted in Partial Fulfillment of the Requirement of the Degree of Master of Science in Engineering Mechanics

By

Mohamed Samir Ibrahim Elsayed

B.Sc. Electrical Engineering, Ain Shams University, 2012

Supervised by

Prof. Dr. / Abdallah Mostafa Elmarhomy Dr. / Mohamed Ahmed Abdelaziz Dr. / Maged Ghoneima

AINSHAMSUNIVERSITY FACULTY OF ENGINEERING Engineering Physics and Mathematics Department

Modeling Vehicle Handling Dynamics to Support Advanced Driver Assisting Systems (ADAS)

By Mohamed Samir Ibrahim Elsayed

B.Sc. Electrical Engineering, Ain Shams University, 2012

A Thesis Submitted in Partial Fulfillment of the Requirement for the Degree of Master of Science in Engineering Mechanics

Examiner's Committee

Name and affiliation	signature
Prof. Dr. / Farid Abdel Aziz Tolbah	
Mechatronics, Ain Shams University	
Prof. Dr. / Mostafa Ahmed Abdeen	
Physics and Mathematics, Cairo University	
Prof. Dr. /Abdallah Mostafa Elmarhomy	
Physics and Mathematics, Ain Shams University	

Date: 21 / 7 / 2018

STATEMENT

This thesis is submitted as partial fulfillment for the degree of Master of Science in Engineering Mechanics, Faculty of Engineering, Ain Shams University.

The author carried out the work included in this thesis, and no part of it has been submitted for a degree or qualification at any other scientific entity.

Student name

Mohamed Samir Ibrahim Elsayed

Signature

.....

Date: / /

RESEARCHER DATA

Name : Mohamed Samir Ibrahim Elsayed

Date of birth : 3/3/1991

Place of birth : Cairo, Egypt

Academic Degree : B.Sc. in Electrical Engineering.

Field of specialization : Electronics and communications

University issued the degree : Ain Shams University.

Date of issued degree : 2012

Current job : Demonstrator at Faculty of

Engineering, Ain Shams University.

THESIS SUMMARY

An accurate vehicle dynamics model is essential for representing the behavior of the vehicle in order to design control systems such as traction control, anti roll control, yaw control etc. The aim of this thesis is to develop and simulate an accurate vehicle dynamics model that can model vehicle behavior during different maneuvers. The model has the ability to run in real time and the ability of decreasing number of degrees of freedom with acceptable error.

A mathematical model has been derived. A SIMULINK model has been built, and different maneuvers have been tested .The model has been run on a RASPBERRY PI kit to examine its ability to run in real time.

The model's degrees of freedom have been decreased one by one from 14 DOF to 7 DOF and the effect of decreasing each degree of freedom has been studied .Finally a graphical user interface program has been developed to make it easier for the user to use the model.

Key Words:

Vehicle dynamics, modeling and real time simulation.

ACKNOWLEDGEMENT

First of all, thanks and indebtedness are due to **ALLAH** who made this work possible.

I would like to express my deep thanks and gratitude to Prof.Dr. Abdallah Elmarhomy, Professor of Engineering Mechanics, Faculty of Engineering, Ain-Shams University, for his support, advices and encouragement that pushed me to do my best to finish this work.

I would like to express my deep thanks and gratitude to Dr. Mohamed Abdelaziz, Automotive department, Faculty of Engineering Ain-Shams University, for his close supervision, continuous useful discussion, and generous guidance throughout the whole work of this study.

I would like to express my deep thanks and gratitude to Dr. Maged ghnoeima, Mechatronics department, Faculty of Engineering Ain-Shams University, for his encouragement to finish this work

Finally I would like to express my deep thanks to my loving and encouraging family for their continuous motivation, endless support, and patience.

LIST OF PUBLICATIONS

[1] K. El-kobbah, I. Conference, Mohamed S. Ibrahim, Mohamed Abdelaziz, Abdallah Elmarhoomy, and Maged Ghoniema, "A 14 DEGREES OF FREEDOM VEHICLE DYNAMICS MODEL TO PREDICT THE BEHAVIOR OF A GOLF CAR" pp. 3–5, 2018.

TABLE OF CONTENTS

STATEMENT	V
RESEARCHER DATA	vii
THESIS SUMMARY	i
ACKNOWLEDGEMENT	.iii
TABLE OF CONTENTS	v
LIST OF TABLES	xii
LIST OF ABBREVIATIONS	xiii
List of Symbols	xiv
CHAPTER ONE:_INTRODUCTION	. 1
1.1 ADAS Examples	. 2
1.1.1 Parking sensors and Automatic parking	. 2
1.1.2 Anti-lock Braking System (ABS)	. 2
1.1.3 Blind Spot Monitor	. 3
1.1.4 Autonomous Cruise Control (ACC)	. 3
1.1.5 Yaw stability control systems	. 3
1.1.5.1 Vehicle dynamics models	. 3
1.1.5.2 Yaw stability control objectives	. 4
1.1.5.3 Active chassis control	. 5
1.1.5.4 Electronic Stability Program (ESP)	. 5
1.2 Thesis objective	. 6
1.3 Thesis Outlines	. 6
CHAPTER TWO:LITERATURE REVIEW	. 7
2.1 Tire Models	. 7
2.2.1 Tires models examples	. 8
2.2.1.1 Linear tire model	. 8
2.2.1.2 Magic formula tire model	. 9

2.2.1.3 Similarity model	10
2.2.1.4 Tire brush model	11
2.2 Vehicle models	12
2.2.1 Bicycle model	12
2.2.2 Double track model	13
CHAPTER THREE:MATHEMATICAL MODEL	17
3.1 Kinematics	17
3.1.1 Coordinate systems	17
3.1.2 Velocities	18
3.1.3 Accelerations	19
3.2 Kinetics	20
3.2.1 Steering Mechanism	20
3.2.2 Tire Model	21
3.3 Vehicle Model	24
CHAPTER FOUR:MODEL IMPLIMENTION AND SIMULATION	26
4.1 Vehicle dynamics model	26
4.1.1 Steering mechanism subsystem	27
4.1.2 Tires Model subsystem	27
4.1.3 Four corners subsystems	28
4.1.4 Vehicle body subsystem	30
4.2 Simulation results	30
4.2.1 Test car	30
4.2.2 Test scenarios	31
4.2.2.1 Step steer input	31
4.2.2.2 Sinusoidal steer input	34
CHAPTER FIVE:MODEL ANALYSIS	38
5.1 Run on target hardware	20

5.1.1 SIMULINK – Raspberry Pi connection	38
5.1.2 Solver step size	39
5.1.2.1 Step input	39
5.1.2.2 Sinusoidal input	41
5.2 Decreasing model's DOF	44
5.2.1 Model States	44
5.2.2 Step input	45
5.2.3 Sinusoidal input	47
5.2.3 Conclusion	49
CHAPTER SIX:GRAPHICAL USER INTERFACE	51
6.1 Vehicle parameters section	51
6.2 No. of DOF section	52
6.3 Input steer section	53
6.4 Run button	53
6.5 Graph choice section	54
6.6 Examples on using the GUI	55
CHAPTER SEVEN:CONCLUSION AND FUTURE WORK	60
7.1 Conclusion	60
7.2 Future work	60
الملخص العربي	63