Ultrasound guided therapeutic excisional vacuum assisted Biopsy in Fibroadenoma (BIRAD3 lesions)

Chesis

Submitted for partial fulfillment of Master degree in radio diagnosis

By

Dr. Haneen Ahmed Najeeb

M.B.Ch.B Mosul University College of Medicine

Under supervision of

Prof.Dr/Ahmed Mohamed Monib

Professor of Radiology Ain -Shams University

Dr/Ahmed Hassan Soliman

Lecturer of Radiodiology
Faculty of Medicine, Ain Shams University

Faculty of Medicine
Ain -shams University
2018

سورة البقرة الآية: ٣٢

First, thanks are all due to Allah for Blessing this work until it has reached its end, as a part of his generous help throughout our life.

My profound thanks and deep appreciation to Prof. Dr/Ahmed Mohamed Monib, Professor of Radiology, Ain - Shams University for his great support and advice, his valuable remarks that gave me the confidence and encouragement to fulfill this work.

I would like also to express my deep gratitude to Dr/Almed Hassan Soliman, Iecturer of Radiodiology, Faculty of Medicine, Ain Shams University for his generous help, guidance and patience through all stages of this work.

LIST OF CONTENTS

Title Page N	10
LIST OF CONTENTS	
List of Tables	
List of Figures	
INTRODUCTIONV	
Aim of the work3	
Review of Literature	
Gross anatomy of the breast4	
Radiological anatomy the breast15	
Pathology of Fibroadenoma22	
Radiological Manifestation of Fibroadenoma 25	
Physical Principle and technical aspect of Vacuum-	
assisted excisional biopsy performed under ultrasound guidance	
Patients and Methods	
Illustrative cases	
Results	
Discussion 67	
Summary and conclusion72	
References75	
1الملخص العربي	

List of Tables

Page No.	Title	Table No.
Table (1): Age (years) distribution of the study group		57
Table (2): Side distribution of the study group		58
Table (3): Lesion (mm) distribution of the study group		59
Table (4): Follow Up distribution of the study group		60
Table (5): Cure distribution of the study group.		61
Table (6): Hematoma distribution of the study group		62
Table (7): Pain during procedure distribution of the study	y group.	63
Table (8): Pain after 2 wks procedure distribution of the	study gro	oup64
Table (9): Comparison between during procedure a		
procedure according to pain		00

List of Figures

Page No. TitleFigure	No.
Fig. (1): Anatomy of the Breast.	5
Fig. (2): Cooper's ligaments in breast anatomy.	6
Fig. (3): The mammary glands views displaying lobes, lobules, and lactiferous	
ducts and sinuses	7
Fig. (4): Image of alveoli in lobule	8
Fig. (5): Anatomy of the nipple and areola	9
Fig. (6): Arterial supply and venous drainage of breast (Moore et. al., 2006)	11
Fig. (7): Nerve supply of the breast	12
Fig. (8): Axillary lymph node groups	14
Fig. (9): Positioning of mammography (Berg et al., 2006).	16
Fig. (10): The CC and MLO Breast view , Note the added visualization of	
the pectoralis muscle on the MLO view	17
Fig. (11): Medio-lateral oblique	18
Fig. (12): The MLO view of fatty breast tissue	19
Fig. (13): The MLO of dense breast tissue	19
Fig. (14): Sono mammography	21
Fig. (15): Macroscopic view of fibroadenoma of the breast	23
Fig. (16): Fibroadenoma of the breast under the microscope at 40x.	24
Fig. (17): Circumscribed oval mass with a bizzare macrocalcification, which	
is similar to a fish bone	26
Fig. (18): Well defined hypoechoeic lesion in the right breast.	27
Fig. (19): MRI showed several features of a benign lesion: Sharp margins,	
lobulation/septation, centrifugal enhancement, gradual	
enhancement over time, and hyperintense T2 signal. Excisional	
biopsy yielded a fibroadenoma	28
Fig. (20): Vacuum assisted breast biopsy equipment including the screen,	
probe, and vacuum-suction device	34

List of Figures 🕏

Fig. (21): The rotating cutter.	35
Fig. (22): Different needle sizes	36
Fig. (23): Articulated arm for U/S guided biopsy. Photograph shows the	
articulated arm with the biopsy attatched	37
Fig. (24): U/S appearance of the probe in proper position	38
Fig. (25): New mammomark clip	40
Fig. (26): Pie chart age (years) distribution of the study group	57
Fig. (27): Pie chart side distribution of the study group	58
Fig. (28): Pie chart lesion (mm) distribution of the study group	59
Fig. (29): Pie chart follow Up distribution of the study group	60
Fig. (30): Pie chart cure distribution of the study group.	61
Fig. (31): Pie chart hematoma distribution of the study group	62
Fig. (32): Pie chart pain during procedure distribution of the study group	63
Fig. (33): Pie chart Pain after 2 wks procedure distribution of the study group	65
Fig. (34): Bar chart between during procedure and after 2 wks procedure	
according to pain	66

Abstract

Background: Our study showed that ultrasound-guided, vacuum-assisted excision can play an efficient role in the diagnosis of benign breast lesions and is a safe and successful alternative treatment of fibroadenomas. Although the breast fibroadenoma is a common benign breast tumor, the treatment and follow-up of these lesions is still debatable. We suggest that UGVAB, which has a well-documented role in the diagnosis of breast lesions, may provide an option for the definitive treatment of breast fibroadenomas.

Objective: The objective of our work was to evaluate ultrasound-guided, vacuum-assisted excision (UGVAE) as an alternative approach in the diagnosis of radiologically benign breast lesions.

Patients and Methods: We prospectively evaluated breast lesions excised using VAB between April -October 2017 at Ain-Shams University /interventionl radiology unit at radiology department, which had a proven diagnosis of fibroadenoma. An informed consent form was obtained from each patient of a total of 25 cases ultrasound-guided VABB using biopsy system. All patients have been subjected to breast ultrasound examination.

Results: Thirteen patients developed hematomas during UGVAE but none needed surgical intervention, while twelve patients pass with no significant hematomas, with 100% cure rate. None of the patients experienced significant enough pain to require the cessation of the procedure, although 22 (88%) patients reported mild pain and moderate pain (12%) during procedure. At the two week control, 3(12%) patients reported taking paracetamol for mild pain. In ten of them (40%) the pain was strong enough to interfere with sleep.

Conclusion: Vacuum assisted Ultrasound-guided biopsy allows real-time imaging, could be performed without breast compression, and is the preferred method if the lesion is detectable with ultrasound.

Keywords: Breast fibroadenomas - Vacuum assisted excisional biopsy - ultrasound-guided, vacuum-assisted excision

INTRODUCTION

Breast fibroadenomas (FA) are a common cause of a benign discrete palpable lump in females [Carty, N.J., Carter, 2005].

They are relatively more common in patients aged between 15 and 35 years. They often present as a painless mobile breast lump which are discovered incidentally in the majority of cases by the patients themselves. They can also be discovered during investigations for other breast conditions or during routine screening imaging or examination. They may either remain static, continue to grow or decrease in size. [Smallwood, J.A., **Roberts, 2007**].

Sixty nine percent of breast lesions undergoing open surgical biopsy are found to be benign (Clin Radiol, 2009) and fibroadenomas (FA) constitute about 50% of those lesions (Greenberg R, Skornick Y,2010).

Vacuum assisted excisional biopsy (VAB) utilizes large bore needles and can extract larger tissue samples compared to fine needle biopsy and core biopsy this leads to a decrease in the rate of negative biopsies as well as a decrease in discordance between the biopsy material and surgical specimen. VAB is also recommended for lesions located close to the thoracic wall or nipple, since it does not employ a forward moving needle (Park HL, Kim LS,2012). Benign lesions may need to be removed if they grow, or symptomatic or produce anxiety in the patient. However, surgical excision is costly, since it requires an operating room and sometimes hospitalization. Because it can extract large volumes of tissue, VAB can also be used for the excision of benign breast lesions (O'Flynn EA, Wilson AR,2010).

Cost-effectiveness has been proved, and this procedure is currently approved for the resection of breast fibroadenomas and other types of benign breast lesions which usually are removed in the operating room. With US-VAB, these patients may avoid going into surgery if the lesion is confirmed to be benign.

As it is a procedure performed under image guiding, the radiologist is the best qualified professional to apply it. (Alonso-Bartolomé P. et al, 2004).

Aim of the work

The aim objective of our work is to evaluate ultrasoundguided, vacuum-assisted excision (UGVAE) as an alternative approach in the diagnosis of radiologically benign breast lesions.

Gross anatomy of the breast

The breasts or Mammary Glands are a pair of symmetrical hemispheric tissue mounds on the anterior wall of the chest. The breasts extend from the 2nd rib to the 6th rib vertically and from the edge of the sternum to the midaxillary line (latissimus dorsi muscle) horizontally, and breast tissue can reach as far superior as the clavicle. (Wentz and Hill., 1997).

The breasts are enclosed in thin skin that contains hair follicles, sebaceous and sweat glands called the superficial fascia. The superficial fascia of the breast covers the pectoralis, serratus anterior and external oblique muscles of the chest. The pectoralis major muscle runs in an oblique line from the humerus to the midsternum. Separating the breast from the pectoral muscle is a layer of adipose tissue and connective fascia referred to as the retromammary space. Other identifying structures of the breast include the base, axillary tail and the inframammary crease. The base of the breast is the posterior surface overlying the pectoralis muscle. (Wentz and Hill., 1997).

Because the breast is loosely attached to the fascia covering the pectoralis major muscle, it is allowed to move over chest wall. The portion of breast extending from the base of the breast into the axillary fossa is called the axillary tail or Tail of Spence. The

inframammary crease or fold is the junction of the inferior portion of the breast with the anterior chest wall. (Hussain et al., 2003).

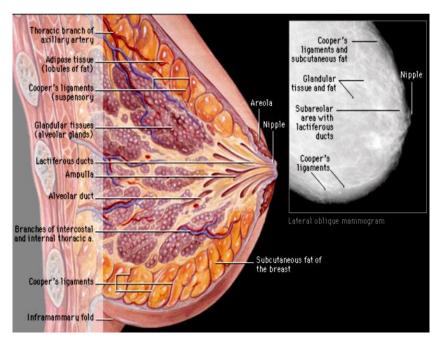
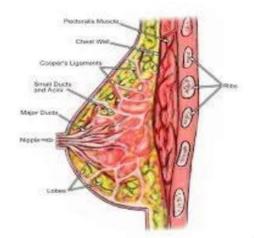


Fig. (1): Anatomy of the Breast. (Hussain et al., 2003)


The breast is made up of three types of tissues: fibrous, glandular and adipose. The fibrous and glandular tissues are generally described as one tissue–fibroglandular. Glandular tissue is primarily located in the central portion of breast and in the extending upper outer quadrant toward the axilla, surrounded by fibrous and adipose tissues. The glandular tissue is arranged in 15-20 lobes, with the fatty and fibrous tissue in between. The lobes are arranged like spokes of a wheel surrounding the nipple. Each lobe has a collecting duct called a lactiferous duct leading to the nipple. Fig (1) (Wentz and Hill., 1997).

A network of fibrous / elastic bands called Cooper's Ligaments envelope the glandular tissue and act as a supporting framework for the breast. They extend from the deep skin layer through the mammary tissue to the deep fascia covering the pectoralis muscle. They can be foreshortened or straightened by fibrosis associated with breast cancer, causing skin retraction or localized architectural distortion. Fig (2) (American cancer society, 2010).

THE COOPER'S LIGAMENTS

- Cooper's ligament, also known as the suspensory ligaments and ligamenta suspensoria mammaria, are connective tissue in the breast that maintain structural integrity.
- They fix the breast from skin to the pectoral fascia.

Fig. (2): Cooper's ligaments in breast anatomy.

The mammary glands are modified sweat glands that lie within the subcutaneous tissue of the breasts, between the pectoral fat pad and the fascia covering the pectoralis major muscle. They are normally mobile on this fascia. The mammary glands may extend beyond the breast toward the axilla, forming an axillary process or "axillary tail". The adult woman's mammary glands are arranged as fifteen to twenty separate lobes, with each lobe containing several secretory lobules Fig (3) (Andolina and Lippincot., 2001).

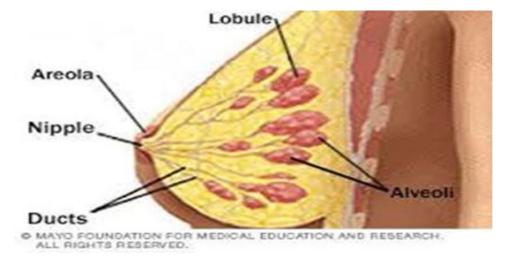


Fig. (3): The mammary glands views displaying lobes, lobules, and lactiferous ducts and sinuses.

The lobules are composed of grape-like clusters of alveoli, which are the hollow sacs that make and hold the breast milk. Fig (Macéa and Fregnani., 2006). Appropriate **(4)** hormonal stimulation is necessary for milk production, as well as milk release. Milk leaves the lobules through numerous interlobular