

AIN SHAMS UNIVERSITY FACULTY OF ENGINEERING

Electronics Engineering and Electrical Communications

Channel Estimation In Massive MIMO Network

A Thesis submitted in partial fulfillment of the requirements of the degree of

Master of Science in Electrical Engineering

(Electronics Engineering and Electrical Communications)

by

Emad Farouk Ibrahim Ibrahim

Master of Science in Electrical Engineering

(Electronics Engineering and Electrical Communications)

Faculty of Engineering, Ain Shams University, 2018

Supervised By

Prof. Salwa Elramly

Dr. Mona Zakaria

Dr. Michael Ibrahim

Cairo-(2018)

AIN SHAMS UNIVERSITY FACULTY OF ENGINEERING

Electronics Engineering and Electrical Communications

Channel Estimation In Massive MIMO Network

by

Emad Farouk Ibrahim Ibrahim

Bachelor of Science in Electrical Engineering
(Electronics Engineering and Electrical Communications)
Faculty of Engineering, Ain Shams University, 2013

Examiners' Committee

Name and Affiliation

Signature

Prof. Salwa Elramly

Electronics and Communications Engineering Ain Shams University

Prof. Hebat-Allah Mostafa Mourad

Electronics and Communications Engineering Cairo University

Dr. Hussien Abdel Atty Elsayed

Electronics and Communications Engineering Ain Shams University

Statement

This thesis is submitted as a partial fulfillment of Master of Science in Electrical Engineering, Faculty of Engineering, Ain shams University.

The author carried out the work included in this thesis, and no part of it has been submitted for a degree or a qualification at any other scientific entity.

Student name:	Emad	Farouk	Ibrahim	Ibrahim

Signature

Researcher Data

Name: Emad Farouk Ibrahim Ibrahim

Date of birth: 10/10/1990

Place of birth: Cairo, Egypt

Last academic degree: B.Sc. in Electrical Engineering

Field of specialization: Electronics and Electrical Communications

Engineering

University issued the degree: Ain Shams University

Date of issued degree: June 2013

Current job: Teaching assistant at Faculty of Engineering, Ain Shams

University.

Acknowledgement

All my thanks to Allah, to the successful completion of this work.

I express my deepest gratitude and thanks to Prof. Salwa Elramly, Electronics and Communications Department, Ain Shams University, for her continuous supervision support and actually she is behind all analytical, technical and even spiritual actions throughout this work. Without her encouragement, the thesis could not reach this level.

Thanks are also due to Dr. Mona Zakaria & Dr. Michael Ibrahim, Electronics and Communications Department, Ain Shams University, for their understanding, patience, encouragement, besides, overcoming any obstacles that might interfere with the research.

Many thanks for my father, mother, sister and brother for their great hearts which take care of me all these years.

Thesis Summary

This thesis discusses channel estimation process in wireless communications systems; our main concerns are on channel estimation techniques based on the superimposed pilots, because these techniques increase the spectral efficiency of the communication systems compared to traditional techniques that are usually based on pilot signals transmission. Our main contribution in this thesis are as follows: firstly, we introduce a joint channel estimation algorithm for single-input-single-output (SISO) time domain synchronous-orthogonal division multiplexing (TDS-OFDM) system superimposed pilots transmission. Secondly, we introduce a new channel estimation algorithm based on superimposed pilots for the spatial multiplexing multiple-inputs-multiple-outputs (MIMO) OFDM systems. Finally, we propose a channel estimation algorithm for multiuser massive MIMO system based on superimposed pilots then we modify it for sparse channel estimation with the aid of compressive sensing techniques, particularly the orthogonal matching pursuit algorithm.

The thesis is divided into six chapters as listed below:

Chapter 1:

This chapter gives a brief introduction to the objectives, major contribution and organization of the thesis. Also, it gives a review on the wireless communications channel, OFDM systems and channel estimation in OFDM system.

Chapter 2:

This chapter introduces a channel estimation algorithm for TDS-OFDM system based on the use of particular type of superimposed pilots wherein no

mutual interference between superimposed pilots signals and data signals to improve the channel estimation accuracy.

Chapter 3:

This chapter presents a review on the MIMO wireless communications systems and the benefits of employing the transmitter and/or the receiver with multiple antennas. Also, it gives a review on detection algorithms for MIMO systems.

Chapter 4:

This chapter introduces a channel estimation algorithm for spatial multiplexing MIMO-OFDM systems based on the use of particular type of superimposed pilots wherein no mutual interference between superimposed pilots signals and data signals.

Chapter 5:

This chapter introduces a review on multiuser massive MIMO systems then it proposes a channel estimation algorithm for multiuser massive MIMO based on superimposed pilot signal transmission after that it modifies the proposed algorithm for sparse channel estimation.

Chapter 6:

This chapter gives the conclusion of this thesis and introduces some suggestions for the future work.

Keywords: Channel Estimation, massive MIMO, Superimposed pilot, compressive sensing.

CONTENTS

		Page
COI	NTENTS	xiii
List	of Figures	xvii
List	of Tables	XX
Abb	reviations	xxi
Non	nenclatures	xxiv
Cha	pter 1: Introduction	1
1.1	Introduction.	1
1.2	Thesis Objectives, major contributions and organization	1
1.3	Wireless Communication Channel	3
	1.3.1 Path Loss	4
	1.3.2 Shadowing	5
	1.3.3 Small-Scale Fading	6
	1.3.3.1 Multipath Wireless Channel Model	6
	1.3.3.2 Time-Dispersive Fading & Coherence Bandwidth	8
	1.3.3.3 Doppler Spread & Coherence Time	9
	1.3.4 Types of Wireless Channels	11
1.4	Single-Carrier Transmission	14
1.5	Orthogonal Frequency Division Multiplexing	15
1.6	OFDM Schemes	18

1.7	Chan	nel Estimation in OFDM Systems	19
	_	Joint Channel Estimation for TDS-OFDM	
on S	uperin	nposed Training	23
2.1	Introd	luction	23
2.2	Syste	m Model	25
2.3	The P	Proposed Channel Estimation Technique	28
	2.3.1	Channel estimation based on PN sequence	28
	2.3.2	Channel estimation based oon ST sequence	30
	2.3.3	MMSE combination	33
2.4	Data 1	Detection	34
2.5	Comp	plexity Analysis	36
2.6	Simul	lation Results	38
2.7	Concl	lusion	42
Cha	pter 3:	MIMO Wireless Communications	43
3. 1	Introd	uction	43
3. 2	Space	Space Diversity	
	3.2.1	Receive Diversity	45
	3.2.2	Diversity combining methods	46
	3.2.3	Transmit Diversity	48
	3.2.4	Space-time coding	53
3. 3	Spatia	l Multiplexing	56
3. 4	MIMO	O System Model	56
3. 5	Capac	ity of MIMO Channel	58
3. 6	Data I	Detection of VBIAST	59
	3.6.1	Matched Filter detector	60
	3.6.2	Zero Forcing detector	61

	3.6.3 MMSE detector	62
	3.6.4 Zero Forcing with Successive Interference Cancellation	63
3.7	MIMO – OFDM Communication	64
3.8	Conclusion	65
	pter 4: Channel Estimation for MIMO-OFDM Sy d on Data Nulling Superimposed Pilots	stems 66
4. 1	Introduction	66
4. 2	Channel Estimation in MIMO-OFDM Systems	66
4. 3	System Model	69
4. 4	The Proposed Channel Estimation Method	73
4. 5	MIMO-OFDM Data Detection	74
4. 6	Complexity Analysis	76
4. 7	Simulation Results	78
4. 8	Conclusion	82
Cha	pter 5: Channel Estimation Technique for M	assive
MIN	IO-OFDM systems	83
5. 1	Introduction	83
5. 2	Multiuser MIMO Communications	83
5. 3	Massive Mu-MIMO communications	86
5. 4	Channel Estimation Techniques in Massive MIMO systems	87
5. 5	Proposed method for Channel Estimation based on DNSP	93
	in massive MIMO-OFDM System	
	5.5.1 System Model	93
	5.5.2 Proposed Channel Estimation Technique	96
	5.5.3 Proposed Data Detection algorithm	97
5. 6	Sparse Channel	99