

Assessment of Klotho Protein and Fibroblast Growth Factor -23 on the Progression of Atherosclerosis in Vitamin D Deficient Egyptian Patients

A Thesis Submitted in Partial Fulfillment for the Degree of Master in Biochemistry Presented By

Walaa Kamal Amín (B.Sc. Biochemistry, 2006)

Under Supervision of

Dr.Eman M. Abd El Azeem

Professor of Biochemistry Biochemistry department Faculty of Science Ain Shams University

Dr. Dina M. Seoudi

Assistant Professor of Biochemistry Biochemistry department Faculty of Science Ain Shams University

Dr. Diaa El Din A. Kamal

Lecturer of Cardiology Cardiology department Faculty of Medicine Ain Shams University

Ain Shams University Faculty of Science Biochemistry department

Dedication

To my father, my mother, my sisters, my brother, my sons and my friends

Their love, encourage, help made studies possible and to them

I owe my success Thank you.

WALAA KAMAL AMIN

DECLARATION

THIS THESIS HAS NOT BEEN SUBMITTED FOR A DEGREE AT THIS OR ANY OTHER UNIVERSITY

WALAA KAMAL AMIN

Acknowledgement

First and foremost, my deep praises to "Allah" who had guided us to this: never could we have found guidance, had it not been for the guidance of Allah. Thanks to Allah of all gifts given to me.

From all my heart, I would like to thank **Dr. Eman**M. Abd El Azeem, professor of Biochemistry, Faculty of
Science, Ain Shams University, for her encouragement,
patience and endless help during the study period.

My special thanks are due to **Dr. Dina M. Seoudi**, assistant professor of Biochemistry, Faculty of Science, Ain Shams University, for her great support, instructive guidance and kind advice.

I am so grateful to **Dr. Diaa El Din A. Kamal,** lecturer of Cardiology, Cardiology department, Faculty of Medicine, Ain Shams University, for his guidance and help during the preparation of this work especially his help in collecting samples.

I am grateful to all my colleagues in Biochemistry Department, Faculty of Science, Ain Shams University, for providing assistance.

Walaa kamal Amin Abd el hady

Contents

Contents	
List of abbreviations.	i
List of figures.	V
List of tables.	xi
Abstract.	xiii
Introduction.	1
Aim of the work.	2
Review of literature.	3
> Atherosclerosis	4
» The structure of normal artery	5
»Progression to atherosclerosis	7
» Risk factors for atherosclerosis	12
»> Genetic factors	12
>>> The acquired factors	12
> Role of Vitamin D in cardiovascular	13
diseases	
»Vitamin D forms	13
»Synthesis of vitamin D	13
»Functions of vitamin D	15
» Relation of vitamin D with atherosclerosis	19
» Vitamin D deficiency	22
»>Risk Factors for Vitamin D Deficiency	22
The fibroblast growth factors-23	23
»The function of FGF-23	
»FGF-23 and CVD	29
>Klotho protein	31
»Different forms of klotho protein	31
»Functions of klotho protein	32
>>> Mechanisms by which Klotho and FGF23 may lead to cardiovascular diseases	35

>Interleukin-17	
» The role of IL-17 in atherosclerosis	
>Rennin angiotensin aldosterone system	45
» Components of RAAS	45
»The role of RAAS in the progression of atherosclerosis	47
>Nitric oxide	48
>Treatment of atherosclerosis	
Subjects and methods.	
Results.	
Discussion.	
Summary.	
References.	
الملخص العربي المستخلص	
المستخلص	

LIST OF ABBREVIATIONS

1α-OHase	1-alpha -hydroxylase
4 AAP	4-amino- antipyrine
ACE	Angiotensin-converting
	enzyme
Ang-II	Angiotensin II
APCs	Antigen presenting cells
BH4	Tetrahydrobiopterin
c-AMP	Cyclic adenosine
	monophosphate
CCL2	Monocyte chemo attractant
	protein-1
CE	Cholesterol esterase
CHDs	Coronary heart diseases
CKD	Chronic kidney disease
CO	Cholesterol oxidase
COX-1	Cyclooxygenase-1
CRP	C-reactive protein
CSFs	Colony stimulating factors
CVDs	Cardiovascular diseases
CXC10	Interferon gamma-induced
	protein-10
CXCL1	Motif chemokine ligand-1
CXCL8	Motif chemokine ligand-8
DCs	Dendritic cell
DMP-1	Dentin matrix protein 1
ECM	Extracellular matrix

ECs	Endothelial cells
EDCF	Endothelial derived
	contracting factor
e-NOS	Endothelial nitric oxide
	synthase
ESRD	End stage renal disease
ET-1	Endothelin -1
FAD	Flavin adenine
	dinucleotide
FGF-23	Fibroblast growth factor-
	23
FGFR-1	Fibroblast growth factor
	receptor-1
FGFRs	Fibroblast growth factor
	receptors
GK	Glycerol kinase
Glut-4	Glucose transporter -4
GM-CSF	Granulocyte-macrophage
	colony-stimulating factor
GPO	Glycerol phosphate
	oxidase
H_2O_2	Hydrogen peroxide
HDL-c	High density lipoprotein
	cholesterol
HRP	Horse radish peroxidase
ICAM-1	Intracellular adhesion
	molecule-1
IFN	Interferon
IGF-1	Insulin like growth factor-
	1

ILs	Interleukins
IR	Insulin receptor
KLF2	Krüppel-like Factor 2
Klotho	Klotho protein
LDL-c	Low density lipoprotein
	cholesterol
LPL	Lipoprotein lipase
LSS	Laminar shear stress
M1	Macrophage -1
M2	Macrophage -2
MBD	Mineral and bone disease
M-CSF	Macrophage- colony
	stimulating factor
MI	Myocardial infarction
MMP	Matrix metalloproteinase
NF-kb	Nuclear factor kabba -b
NK	Natural killer
NO	Nitric oxide
ox-LDL	Oxidized low density
	lipoprotein
Phex	Phosphate-regulating
	neutral endopeptidase
POD	Peroxidase
PTH	Parathyroid hormone
RAAS	Rennin-Angiotensin-
	Aldosterone system
RANKL	Receptor activator of
	nuclear factor kappa - B
	ligand
ROS	Reactive oxygen species
SMCs	Smooth muscle cells

TAG	Triacylglycerol
TGFs	Transforming growth
	factors
Th	T- helper
TMB	Tetra methyl benzidine
TNF- α	Tumor necrosis factor
	alpha
TNFs	Tumor necrosis factors
TRPC6	Transient receptor
	potential cation channel,
	subfamily C, and member
	6
VCAM-1	Vascular cell adhesion
	molecule-1
VDBP	Vitamin D binding protein
VDRs	Vitamin D receptors
VLDL-c	Very low density
	lipoprotein cholesterol
VSMCs	Vascular smooth muscle
	cells

List of figures

Figure	Title	Page
1	Cardiovascular diseases world map	4
2	Normal artery structure	6
3	The structure of an artery wall	7
4	Longitudinal and transverse	10
	microscopic views of an artery in	
	atherosclerosis	
5	The function of VSMCs during	11
	different stages of atherosclerosis	
6	Steps for vitamin D biosynthesis	14
7	Classical actions of vitamin D	16
8	classical and potential effects of	18
	vitamin D	
9	Schematic representation illustrating	21
	synoptically the metabolism and	
	actions of vitamin D	
10	Potential mechanisms for	23
	cardiovascular toxicity of vitamin D	
	Deficiency	
11	The effect of FGF23 on the serum	26
	phosphate	
12	Pleiotropic endocrine and auto-	27
	/paracrine functions of FGF23	
13	Factors that regulate FGF-23 synthesis	29
	and secretion	
14	FGF-23 directly targets the heart	30
15	Source of soluble klotho	34
16	Putative mechanisms by which klotho	35
	and FGF23 result in cardiovascular	
	diseases	
17	Pathophysiological role of klotho	38
	deficiency	
18	TH-17 activation and product	41

19	Biological functions of IL-17	42
20	Summary of the protective and	43
	pathogenic effects of interleukin IL-17	
	in atherosclerosis	
21	Rennin- angiotensin-aldosterone	46
	system	
22	Scheme of NO involvement in	50
	atherogenesis	
23	Nitric oxide and atherosclerosis	51
24	Standard curve for vitamin D ₃	61
25	Standard curve for FGF-23	65
26	Standard curve for klotho protein	69
27	Standard curve for IL-17	73
28	Standard curve for rennin	76
29	Percent changes for vitamin D, FGF-23	94
	and klotho protein	
30	Percent changes for IL-17, rennin and	97
	nitric oxide	
31	Percent changes for calcium and	99
	phosphorus	
32	Percent changes for TAG, TC, HDL-c,	102
62	LDL-c and VLDL-c	102
33	Graph dataset correlation between	106
	vitamin D and FGF-23 in VDD group	
24		107
34	Graph dataset correlation between	106
	vitamin D and klotho protein in VDD	
	group.	
35	Graph dataset correlation between	107
	vitamin D and IL-17 in VDD group.	
36	Graph dataset correlation between	107
	vitamin D and rennin in VDD group.	
27		100
37	Graph dataset correlation between vitamin D and NO in VDD group	108
	vitamin D and NO in VDD group	

49	vitamin D and NO in VDI group Graph dataset correlation between	116
48	Graph dataset correlation between	116
47	Graph dataset correlation between vitamin D and rennin in VDI group.	115
46	Graph dataset correlation between vitamin D and IL-17 in VDI group.	115
45	Graph dataset correlation between vitamin D and klotho protein in VDI group.	114
44	Graph dataset correlation between vitamin D and FGF-23 in VDI group	114
43	Graph dataset correlation between vitamin D and LDL-c in VDD group	111
42	Graph dataset correlation between vitamin D and HDL-c in VDD group	110
41	Graph dataset correlation between vitamin D and TC in VDD group	110
40	Graph dataset correlation between vitamin D and TAG in VDD group	109
39	Graph dataset correlation between vitamin D and phosphorus in VDD group	109
38	Graph dataset correlation between vitamin D and calcium in VDD group	108

	vitamin D and TAG in VDI group	
52	Graph dataset correlation between vitamin D and TC in VDI group	118
53	Graph dataset correlation between vitamin D and HDL-c in VDI group	118
54	Graph dataset correlation between vitamin D and LDL-c in VDI group	119
55	Graph data set correlation between vitamin D and FGF-23	121
56	Graph data set correlation between vitamin D and klotho	121
57	Graph data set correlation between vitamin D and IL-17	122
58	Graph data set correlation between vitamin D and renin	122
59	Graph data set correlation between vitamin D and NO	123
60	Graph data set correlation between vitamin D and calcium	123
61	Graph data set correlation between vitamin D and phosphorus	124
62	Graph data set correlation between vitamin D and TAG	124
63	Graph data set correlation between vitamin D and TC	125
64	Graph data set correlation between vitamin D and HDL-c	125
65	Graph data set correlation between vitamin D and LDL-c	126
66	Receiver operating characteristic (ROC) curve of rennin for VDD	128