Al-Azhar University Faculty of Science Chemistry Department

Kinetic studies for some enzyme catalyzed reactions

by

Usama Ahmed Bahaa Eldin

(B.Sc. Chemistry, Al- Azhar University, 2006)
A Thesis Submitted for
The Partial Fulfillment for the Master Degree of Science
(Physical Chemistry)

Supervised by

Prof. Dr. Mohamed F. El-Hadi

Prof. of physical Chemistry Chemistry department Faculty of Science Al- Azhar University

Prof. Dr. Hanaa Abdelfatah Mansour

Prof. of microbiology National Organization For Drug and Control Research(NODCAR)

Prof. Dr. Farouk I. Zidan

Prof. of physical Chemistry Chemistry department Faculty of Science Al- Azhar University

Ass. Prof. Khaled O. Abdalla

Ass. Prof. of immunity Faculty of Medicine Ain Shams University

To Faculty of Science Al- Azhar University

Cairo - Egypt 2014

Acknowledgement

At the beginning, praise is to Almighty Allah, the lord of the world, whose guidance, blessings and help enabled me to take my first step on the path of improving my knowledge through this humble effort.

Very special thanks to Prof. Dr. Ahmed M. Elagrody the Head of the Chemistry Department, for his cooperation during the achievement of this work.

I am also thankful for Prof. Dr. Mohamed fikry Elhadi, Professor of Physical Chemistry, faculty of science, Al-Azhr university and Prof. Dr. Farouk Isamael Zidan, Professor of physical Chemistry, faculty of science, Al-Azhar university for suggesting the research problem, guidance, advice and valuable help throughout this work. Their constructive criticism and comments from the initial conception to the end of this work are highly appreciated and the motivation that I need to succeed in the future.

I wish also to express my appreciation to Prof. Dr. Hanaa Abdelfattah Mansour, Professor of Microbiology, National Organization for Drug Control and Research (NODCAR), for her guidance and encouragement at all stages of my work and stimulating discussion throughout this work.

Special grateful thanks and indebted appreciation go to Prof. Dr. Khaled Omar Abdullah, Assoc. Prof. of Immunity, Faculty of Medicine, Ain Shams University, for his valuable advices and continuous supervision during all steps of this work.

Finally I would like to thank my dear friends, teaching staff and colleagues at Chemistry Department.

Candidate

Usama Ahmed Bahaa Eldin

Contents	
Acknowledgement	
List of Tables	
List of Figures	
List of abbreviations	
Summary	
Part 1 : Introduction	
Enzyme definition	
Historical background	
Natural properties	
Enzymes cofactor	
Enzyme specificity	
Importance of enzymes in our life	
Enzymes as biochemical catalyst	
Thermodynamics point of view	
Factors affecting enzymes	
The effect of pH	
The effect of temperature	
Enzymes inhibitors overview	
Types of enzymes according to their functions	
Family of Peroxidases	
Horse radish Peroxide (HRP) as an important member of peroxidase	
family	
HRP importance	
HRP structure	
Protein structure of HRP	
HRP redox cycle	
Characteristics and properties for Native Horseradish Peroxidase	
Factors affecting the HRP reaction	
HRP inhibitors	
Inhibitors types	
The aim of the work	
Part 2 : Materials and Methods	

Equipments Used	30
Reagents Used	30
Reagent Preparations	31
Method concept	31
Experimental design	32
Experiments	34
Studying The Effect Of Changing The Enzyme Concentration On	
The Reaction Rate	34
The Effect Of Substrate Concentration On The Reaction Rate	37
The Effect Of pH On The Reaction Rate	40
The Effect Of Temperature On Reaction Rate	42
Experiment For Obtaining k ₂	44
The inhibition effect of PABA and LCTN	45
Part 3: Results and discussion	48
Chapter I: Characterization of the enzymatic reaction	48
The effect of enzyme concentration on the reaction rate	48
The effect of substrate concentration on reaction rate	52
The effect of pH on the reaction rate	55
The Effect Of Temperature On Reaction Rate	57
Thermal stability of CHRP enzyme	57
Chapter II: Determination of some important kinetic and	
thermodynamic parameters	61
	01
Determination of CHRP Michaelis–Menten constant (k_m) and	
maximum velocity (V _{max}) using different ways	61
The 1 st way: The direct plot between the reaction rate and the	
substrate concentration	61
The 2 nd way: The Double reciprocal plot (or Lineweaver–Burk plot)	64
The 3 rd way Eadie–Hofstee plot	68
Determination of k ₂	70
Determination of catalytic efficiency of the CHRP	78
Determination of Ea	79
Temperature dependence of the enzyme reaction	80
Determination of k ₂ of the enzyme at 3 °C	84

Determination of k ₂ of the enzyme at 10 °C	85
Determination of k ₂ of the enzyme at 15 °C	86
Determination of k ₂ of the enzyme at 40 °C	87
Activation and other thermodynamic parameters	90
Chapter III: Inhibition study on the conjugated HRP	93
LCTN inhibitor	95
PABC inhibitor	100
References:	103

List of Tables

Table.1 Preparation of Various Enzyme Concentrations	34
Table.2 Preparation of Reaction Mixtures	35
Table.3 Reaction Mixtures	37
Table.4 The molar concentration of peroxide for each reaction mixture	38
Table.5 The pH of reaction mixture	41
Table.6 Various reaction mixtures buffered at pH 7 at different	
temperatures	43
Table.7 The reaction mixtures in the presence of either PABA and LCTN inhibitor	46
Table.8 Relation between the reaction rate and time for each	
enzyme concentration	49
Table.9 Data obtained from experiment (2)	52
Table.10 The values of the reaction rate (V _o) obtained at	
different pH values	55
Table.11 . The values of the reaction rates (V_0) obtained at	
different temperatures	57
Table.12 . The values of the reaction rates obtained at different	
substrate concentrations	61
Table.13 The values of the reaction rates obtained at different	
substrate concentrations and the reciprocal values	65
Table.14 The relation between V ^o /[S] and [S]	68
Table.15 : Values of ($[S]_0$ /v) and (1/(Vmax -V)) at different	
substrate concentrations	76
Table 16 : Calculation of $([S]_o/v)$ and $(1/(Vmax - V))$ at	
different substrate concentrations at 3 °C	84
Table 17 : Calculation of ($[S]_0/v$) and ($1/(Vmax - V)$) at	
different substrate concentrations at 10 °C	85
Table 18 : Calculation of ($[S]_o/v$) and ($1/(Vmax - V)$) at	
different substrate concentrations at 15 °C3	86
Table 19 : Calculation of ($[S]_o/v$) and ($1/(Vmax - V)$) at	
different substrate concentrations at 40 °C	87
Table.20 : Plots of $\ln k_2$ and $1/T$ at different temperatures	88
Table 21 : Calculation of ΔG # free energy of activation	91
Table 22 : Calculation of (1/[S]) and (1/[S]) at different substrate	
concentrations with and without adding the inhibitors	93

List of Figures

Figure 1: Structure of HRP
Figure 2 Three dimensional view of HRP
Figure 3: The five oxidation states of horseradish peroxidase
Figure 4. Relation between O.D. and reaction time in presence
of different enzyme concentrations.
Figure 5 Relation between rate velocity and substrate concentration.
Figure.6 . The relation between reaction rate and pH
Figure.7 Temperature behavior of CHRP enzyme. Direct plot
of the velocity against temperature
Figure.8 . The relation between the reaction rate and the
substrate concentration.
Figure.9 The Double reciprocal plot (Lineweaver–Burk plot)
Figure.10 The Eadie–Hofstee plot.
Figure.11 . Determination of k ₂ of the enzyme at 25 °C
Figure.12 Energy profile of an enzyme-catalyzed reaction
Figure 13 . Determination of k ₂ of the enzyme at 3 °C
Figure 14 . Determination of k ₂ of the enzyme at 10 °C
Figure 15 . Determination of k ₂ of the enzyme at 15 °C
Figure 16 . Determination of k ₂ of the enzyme at 40 °C
Figure 17. Arrhenius plots
Figure 18 The Eyring plot
Figure.19: The relation between reaction rate and the substrate
concentration in the presence of LCTN and BABA
inhibitors and in absence of both.
Figure .20: Lineweaver plots in the presence of PABA and
LCTN inhibitors in comparison with the reaction in
absence of inhibitors
Figure.21 : Lineweaver-Burk plot for the reaction with LCTN
inhibitor and without inhibitor
Figure.22: : Lineweaver-Burk plot for the reaction with PABA
inhibitor and without inhibitor

List of abbreviations

(E _a)	activation energy
(NAD)	nicotinamide adenine dinucleotide
(ATP)	Adenine tri phosphate
(Asp)	Aspartic acid
(POD)	Peroxidases
(HRP)	Horse radish peroxides
(CHRP)	Conjugated horse radish peroxides
(k _m)	Michaelis menten constant
(V _{max})	maximum velocity
(k _{cat})	the rate velocity constant
(His)	histidine residue
(S)	Substrate
(1)	Inhibitor
(E)	Enzyme
(EIA)	Enzyme Immunoassays
(ELISA)	Enzyme Linked Immunosorbent Aassay
$\Delta H^*)$	Enthalpy of activation
(ΔS [*])	entropy of activation
(ΔG^*)	free energy of activation
(PABA)	para aminobenzoic acid
(LCTN)	L-cystine
(T _m)	denaturation temperature
(O.D)	optical density
(IgG)	Immunoglobulin

Summary

In this study, we have chosen for study the Horse Radish Peroxidase conjugated to a specific mouse antibody against human hepatitis B virus. This conjugated Horse radish peroxisdase (CHRP) is commonly used as an important component in enzyme Immunoassays (EIA) for detection of hepatitis B (surface) antigen in human serum or plasma.[34] We have studied the characteristics of this CHRP enzymatic reaction, factors affecting its catalytic behavior, and how some substances could inhibit its action, determination of some important catalytic and thermodynamic parameters. We can classify our study into three main Parts:

Part 1: Introduction

In this part, important information have been mentioned about the enzyme properties generally, and specially about the native Horse radish peroxidase (HRP). Moreover, the introduction includes literature survey on the studies that had been done on Horse radish peroxidase and also the aim of the work.

Part 2: Experimental design:

This chapter includes description of the experiments carried out in this study for CHRP characterization and also for determination of the kinetic and thermodynamic parameters. The inhibitors of the CHRP were included in the experimental design for to study their effect on the CHRP.

Part 3: Results and discussion

Which may be classified into three chapters as shown:

Chapter I) characterization of the enzymatic reaction of the conjugated HRP: in this chapter, the different factors that should affect the reaction were studied such as: the effect of each conjugated HRP and substrate concentrations, the effect of pH of the reaction meduim, and the effect of the temperature on the reaction.

chapter II) Determination of some important kinetic and thermodynamic parameters: In this chapter, Michaelis menten constant k_m , the maximum velocity of the reaction V_{max} , and the rate velocity constant or k_2 (or k_{cat}) were calculated, where k_2 at different temperatures in order to obtain the activation energy of the reaction E_a , and so, other activation thermodynamic parameters: enthalpy ΔH^* , entropy ΔS^* and the free energy ΔG^* were also evaluated.

chapter III)) Inhibition study on the conjugate HRP reaction: in this chapter, two important biochemical substances were chosen for their important biological functions: (i) The inhibition effect of para-aminobenzoic acid (PABA), which has many important biological properties, it was used to improve the protein used in the body and also relates to red blood cell formation as well as assisting the manufacture of folic acid in the intestines. Para-aminobenzoic acid is used in sunscreen preparations since it can protect the skin against ultra-violet radiation. (ii) second inhibitor used is I-cystien (LCTN) which considered as an important source of sulfide in human metabolism and many other bilolgical functions.[21]. We studied each enzyme separately and compared there results with those of uninhibited reactions to determine the inhibition functions.

Part 1: Introduction

Enzymes are protein molecules that catalyze chemical reactions. where the molecules at the beginning of the process, called substrates, are converted into different molecules, called products. [1,2]

The existence of enzymes has been known for well over a century. Some of the earliest studies were performed in 1835 by the Swedish chemist Jon Jakob Berzelius who termed their chemical action catalysis. It was not until 1926, however, that the first enzyme was obtained in pure form, a feat accomplished by James B. Sumner of Cornell University. Sumner was able to isolate and crystallize the enzyme urease from the jack bean. His work was to earn him the 1947 Nobel Prize. [3]

John H. Northrop and Wendell M. Stanley of the Rockefeller Institute for Medical Research shared the 1947 Nobel Prize with Sumner. They discovered a complex procedure for isolating pepsin. This precipitation technique devised by Northrop and Stanley has been used to crystallize several enzymes. [4]

All known enzymes are proteins (A few ribonucleoprotein enzymes have been discovered and, for some of these, the catalytic activity is in the RNA part rather than the protein part. Link to discussion of these ribozymes). They are high molecular weight compounds made up principally of chains of amino acids linked together through peptide bonds linkage.

Enzymes can be denatured and precipitated with salts, solvents and other reagents. They have molecular weights ranging from 10,000 to 2,000,000.

Many enzymes require the presence of other compounds - cofactors (co –enzymes)- before their catalytic activity can be exerted. This entire active complex is referred to as the holoenzyme; i.e., apoenzyme (protein portion) plus the cofactor (coenzyme, prosthetic group or metal-ion-activator) is called the holoenzyme.

According to Holum [4], the cofactor may be:

 A coenzyme - a non-protein organic substance which is dialyzable, thermostable and loosely attached to the protein part.

- A prosthetic group an organic substance which is dialyzable and thermostable which is firmly attached to the protein or apoenzyme portion.
- A metal-ion-activator these include many metals such as: K⁺, Fe⁺⁺⁺, Fe⁺⁺⁺, Cu⁺⁺, Co⁺⁺, Zn⁺⁺, Mn⁺⁺, Mg⁺⁺, Ca⁺⁺, and Mo⁺⁺⁺.

One of the properties of enzymes that makes them so important as diagnostic and research tools is the specificity they exhibit relative to the reactions they catalyze. A few enzymes exhibit absolute specificity; that is, they will catalyze only one particular reaction. Other enzymes will be specific for a particular type of chemical bond or functional group.

In general, there are four distinct types of specificity^[5]:

- Absolute specificity the enzyme will catalyze only one reaction.
- Group specificity the enzyme will act only on molecules that have specific functional groups, such as amino, phosphate and methyl groups.