CONE BEAM COMPUTED TOMOGRAPHY VERSUS DIGITAL RADIOGRAPHY IN ASSESSMENT OF IMPACTED WISDOM TEETH

Thesis Submitted to
The Faculty of Oral & Dental Medicine
Cairo University

In Partial Fulfillment of the Requirements for Master Degree of Oral Radiology

By

Dalia Ali Hussein

B.D.S 2005

Faculty of Oral and Dental Medicine
6 October University

Supervisors

Dr. Hoda Abd El Kader Saleh
Professor of Oral Radiology Department
Faculty of Oral and Dental Medicine
Cairo University

Dr.Sherouk Hassan Ali Khalifa
Lecturer, Oral Radiology Department
Faculty of Oral and Dental Medicine
Cairo University

Acknowledgement

Before all and above all, thanks to Allah for everything

I would like to express my deepest gratitude and appreciation to **Dr. HodaAbd El KadrSaleh**, professor of Oral Radiology, Faculty of Oral and Dental Medicine, Cairo University, for her valuable guidance, instructive supervision, and sincere encouragement.

I'm also thankful for **Dr. Sherouk Hassan Ali Khalifa**, Lecturer of Oral radiology, Faculty of oral and Dental Medicine, Cairo University, for her guidance and for directing me throughout the study.

Many thanks for **Professor M. Ekram** and **Radiodiagnostic Center members** for their complete support and cooperation.

Finally, I would like to thank all the staff members of the Oral Radiology Department, Faculty of Oral and Dental Medicine, and Diagnostic Radiology Department, Faculty of Medicine, Cairo University for their excellent support and cooperation.

Dedication

To my **father**, who taught me that the best kind of knowledge to have is that which is learned for its own sake and who taught me that even the largest task can be accomplished if it is done one step at a time.

To my **mother**, who taught me to make reading and learning a basic part of my personality, for her encouragement and inspiration to me throughout my life, and for providing a 'writing space'.

To my big family whom made me very grateful to be a member of them.

بِسْمِ اللهِ الرَّحْمنِ الرَّحِيمِ
وَقُلْ رَبِّ زِدْنِي عِلْمًا
الآية رقم [118] من سورة طه

Table of Contents

	Page
1. Introduction	1
2. Review of literature	4
2.1. Significance of impacted third molar	4
2.2. Classification of impacted third molar	6
2.3. Radiographic assessment of impacted third molar	9
2.3.1. Conventional radiography	9
2.3.1.1. Intraoral radiography	9
2.3.1.1.1. Periappical radiography	9
2.3.1.1.2. Bite wing radiography	10
2.3.1.1.3. Occlusal radiography	10
2.3.1.2. Extraoral radiographs	12
2.3.1.2.1. Panoramic radiography	12
2.3.1.2.2. Skull projections	14
2.3.1.2.3. Conventional tomography	14
3. Computed tomography and cross-section imaging	15
4. Digital radiography	18
5. Cone beam computed tomography (CBCT)	31
4. Aim of the Study	49
5. Patients & Methods	50
6. Results	66
7. Discussion	82
8. Summery and Conclusion	89
9. References	92
10. Arabic Summery	

List of Tables

Table	Content				
Table 1	Suggested imaging protocols for CBCT examinations				
Table 2	Assessment of No. of roots using digital panoramic and CBCT reformatted images				
Table 3	Assessment of the root morphology using digital panoramic and CBCT reformatted images	68			
Table 4	Assessment of caries of the second & third molars using digital panoramic and CBCT reformatted images				
Table 5	Assessment of the vertical position of impacted wisdom teeth using digital panoramic and CBCT images				
Table 6	Assessment of MD inclinations using digital panoramic images				
Table 7	Assessment of the darkening of the root of the mandibular third molar using digital panoramic and CBCT images				
Table 8	Assessment of the relation of the root apex of the lower third molar to IAC using digital panoramic and reformatted CBCT images				
Table 9	Assessment of the proximity of the root apex of the				
Table 10	Assessment of the bony statuses around the crown of the third molars on reformatted CBCT images				
Table 11	Assessment of BP or BL inclinations using CBCT reformatted images				
Table 12	Assessment of the proximity of the root apices of the lower third molar to the buccal plate of bone on reformatted CBCT images	81			
Table 13	Assessment of the proximity of the root apices of the lower third molar to the lingual plate of bone on reformatted CBCT images	82			

List of Figures

Figure	Content				
Figure 1	Winters classification of impacted wisdom teeth	7			
	Pell and Gregory classification based on with wisdom				
Figure 2	teeth relationship with the anterior border of the ramus				
	of the mandible				
Figure 3	Pell and Gregory classification based upon the amoun				
1 iguit 5	of bone covering the impacted tooth				
Figure 4	Panoramic radiograph showing mandibular canal in the	12			
	vertical plane	10			
Figure 5	Bilateral ear rings casting ghost images	13			
Figure 6	Reconstructed coronal and sagital sections from	16			
E: 7	original axial scan	10			
Figure 7	Image formation and digitization	18			
Figure 8	Two intraoral Trophy RVG CCD sensors and Trophy	20			
	Digipan panoramic CCD sensor				
Figure 9	Phosphor storage plate system and reading the data in a	21			
	scanner				
Figure 10	Solid-state digital panoramic machine				
Figure 11	The difference between the data captures system of				
F: 40	regular CT and CBCT				
Figure 12	Source and opposing flat panel detector rotating around				
F: 12	the patient's jaw, capturing image data in one sweep				
Figure 13	Acquisition of basis projection	35 37			
Figure 14	Secondary reconstructions of the primary images into				
Figure 15	in three orthogonal planes (axial, sagittal, and coronal) Standard display modes of CBCT volumetric data	38			
Figure 16		46			
rigure 10	Coloring on the mandibular canal ,(a&b) diagnosis of the impacted tooth(c) and location of the mandibular				
	canal and anterior loop (d)				
Figure 17	third molar in the Axial View (checking the root	46			
	direction.(A) and reformatted panoramic image of				
	CBCT of impacted third molar				
Figure 18	Cropped digital panorama showing double rooted	50			
	vertically positioned lower 3 rd wisdom molar	52			
Figure 19	Reformatted axial cuts of CBCT showing numbers of	mbers of			
	the roots of the wisdom teeth	53			
Figure 20					
	CBCT panoramic image showing apical root curvature	53			

Figure 21	Cross sectional reformatted CBCT showing the root curvature in the PL direction 54		
Figure 22	Cropped digital panorama showing advanced carious lesion in the distal surface of 2nd molar	l carious 54	
Figure 23	Classification of the vertical third molar positions on digital panoramic radiographs	55	
Figure 24	Classification of the vertical third molar position on CBCT	56	
Figure 25	Diagram illustrate the angles of the classifications of the MD inclination of the upper wisdom tooth based on Matsuda's classification	56	
Figure 26	Mesio-distal inclinations of impacted maxillary wisdom teeth on digital panoramic radiographs	57	
Figure 27	Cropped digital panoramic image showing darkening of a part of the 3 rd molar root	58	
Figure 28			
Figure 29	Cropped digital panoramic image showing darkening of the roots and corresponding reformatted cross sectional CBCT image of the same case showing perforation of the lingual plate of bone	59	
Figure 30	Cropped digital panoramic image showing darkening of the mesial root and corresponding reformatted cross sectional CBCT image of the same case showing grooving of the same root	58	
Figure 31	Relationship between the lower third molar root and the mandibular canal on the digital panoramic radiographs	60	
Figure 32	Cross sectional reformatted CBCT images demonstrate the relation between the root apices of the lower impacted third molar and IAC	61	
Figure 33	Relationship of the third molar to the maxillary sinus on digital panoramic radiographs	62	
Figure 34			
Figure 35	Bony status around the crown of impacted wisdom teeth on reformatted axial CBCT images	63	
Figure 36	Bucco-palatal or Bucco-lingual inclinations on	64	

	reformatted axial CBCT images			
Figure 37	7 Cross sectional CBCT showing the distance separating the root apex of the wisdom teeth from the buccal & lingual plate of bone			
Figure 38	Histogram showing correlation between digital panoramic and CBCT reformatted images regarding no of roots 67			
Figure 39	Histogram showing correlation between digital panoramic and CBCT reformatted images regarding root morphology			
Figure 40	carious lesions in both second & third molars using digital panoramic and CBCT images	70		
Figure 41	Assessment of the vertical positions of impacted wisdom teeth using digital panoramic and CBCT images			
Figure 42	Assessment of MD inclinations using digital panoramic and CBCT reformatted images	73		
Figure 43	Correlation between darkening of the root of the mandibular third molar in digital panoramic and CBCT reformatted axial images findings	74		
Figure 44	Assessment of the relation of the root apex of the lower third molar to IAC using the digital panoramic and reformatted CBCT images	76		
Figure 45	Assessment of the proximity of the root apex of the upper third molar to maxillary sinus using the digital panoramic and reformatted CBCT images	77		
Figure 46	Bichart showing the percentages of the different bony status around the crown of the impacted wisdom teeth on reformatted axial CBCT images	79		
Figure 47	Bichart showing the percentages of the different BP or BL inclinations using CBCT reformatted cross sectional images	80		
Figure 48	Bichart showing the percentages of the different proximity of the root apices of the lower third molar to the buccal plate of bone on reformatted cross sectional CBCT images			
Figure 49				

List of Abbreviations

Abbreviation	Content
2D	Two Dimensional
3D	Three Dimensional
CBCT	Cone-Beam Computed Tomography
CCD(s)	Charge-coupled Device(s)
CMOS-APS	Complementary Metal Oxide Semiconductor Active Pixel
	Sensor
CT	Computed Tomography
FOV(s)	Field Of View(s)
IAN	Inferior Alveolar Nerve
IIT/CCD	Image Intensifier Tube/Charge-Coupled Device
Lin	Lingual
M(s)	Molar(s)
MDCT	Multi-detector Computed Tomography
MIP	Maximum Intensity Projection
MPR	Multi-planar Reconstruction
OMS	Oral and Maxillofacial Surgeons
PA	Postero-anterior
PSP	Phosphor Storage Plate
ROI	Region Of Interest
SPSS	Statistical Package for The Social Sciences
TMJ	Tempro Mandibular Joint

Introduction

Introduction

The history of wisdom teeth problems is probably as old as the history of mankind. The term "impacted tooth" refers to a dental disorder that involves failure of a tooth to emerge through the gums. An impacted tooth remains embedded in soft gingival (gum) tissue or bone beyond its normal eruption time. Dental impaction has been reported to affect as much as 25-50% of the population. Any tooth can be impacted; however, the principal teeth that present impactions are third molars and maxillary canines^{1, 2, 62}.

Surgical removal of wisdom teeth is common due to different causes including unrestorable caries, non-treatable pulpal and/or periapical pathology, cellulitis, abscess ,osteomyelitis, internal/external resorption of the tooth or adjacent teeth, fracture of tooth, disease of follicle including cyst/tumor, tooth/teeth impeding surgery or reconstructive jaw surgery, and when a tooth is involved in or within the field of tumor resection⁴

The surgical procedure is straight forward with little or no risk for damage to the surrounding structures. In cases which have intimate relationship between their roots and the mandibular canal or the lingual bone plate, permanent or temporary damage to the lingual or inferior alveolar nerve may occur with temporary or permanent paresthesia of the affected side of the lower lip^{63, 64-66}.

Regarding maxillary third molars little structures are critical to surgical success as the maxillary sinus. Understanding of the maxillary third molar anatomy, including its location, circumscribed bone is also essential for extraction because the method of approach and risk of sinus perforation should be adequately determined before extraction. In addition understanding the anatomy in the interpretation of odontogenic infection pathways is important. That is why an accurate radiographic diagnosis is necessary to estimate the risk involved with an anticipated extraction^{3, 6}.

The intent of radiographic imaging is to provide an intraosseous view of related structures. The location and position to other structures such as the mandibular canal, adjacent teeth, sinus walls, and cortical borders are Important for assessing the treatment complexity, prior to extracting impacted

third molars. In addition, the assessment determines the presence or absence of pathologic conditions and can be beneficial for predicting treatment outcomes⁷.

Failure to adequately determine these relationships leaves both the dental surgeon and the patient uninformed of the associated risks, a situation which is well documented by a variety of undesirable treatment outcomes such as nerve damage, bleeding, sinus perforations, and jaw or tooth fractures⁸.

The localization of impacted teeth can be confirmed radiographically using a combination of perpendicular or near perpendicular projected images like occlusal, periapical, or panoramic radiographs. Alternatively, pairs of images taken with known different perspective can be used for localization using the parallax technique².

While panoramic imaging has been a great benefit to the dental profession, it still has some significant limitations. Some of these are associated with all film-based systems and include chemical processing and related quality assurance problems. In addition, panoramic radiographs are susceptible to degradation by errors in patient positioning. Digital imaging has proved to be a significant advance for intra-oral radiography. Many of the quality assurance problems associated with film processing have been eliminated. In addition, use of various types of enhancements may allow digital images to exceed the diagnostic performance of film¹⁰.

Digital technologies add more benefits, to conventional panoramic radiography by eliminating errors associated with processing and providing an opportunity for the use of digital enhancement. Digital panoramic radiography also promises a decrease in radiation exposure as they require a lower dose for image formation.

Because of the limitations associated with the use of a two-dimensional image, three-dimensional information with the aid of cone beam computed tomography (CBCT) or low-dose computed tomography (CT) has been used by some clinicians^{2, 10}.

Cone-beam computed tomography (CBCT) is a very useful tool in the assessment of impacted teeth and is being widely used instead of or in addition to conventional techniques. Its main advantages include: more detailed visualization of the region where surgery will take place, when compared with

other conventional types of radiographs, and reduced patient exposure to radiation in comparison with helical computed tomography. With CBCT, the impacted tooth can be seen in multi-planar views (Multi-planar Reconstruction – MPR). This makes it possible to obtain the precise location of the tooth and to establish the relations between it and adjacent structures⁸⁶⁻⁸⁸.

Inspite of the extended applications of CBCT in the various fields of dentistry little work was done to evaluate the reliability of this modality in assessment of impacted wisdom teeth in comparison with digital radiography.