Antifungal Activities of Some Plant Extracts Against Pathogenic Fungi

Thesis

Submitted in partial fulfillment of the requirements of the degree of Master in Microbiology (Microbiology)

BY Ereny Atef Wadee (B.Sc. Microbiology, 2011)

Supervisors

Dr. Saadia Mohamed Easa

Professor assistant of Microbiology, Microbiology Department, Faculty of Science, Ain shams university

Prof. Dr. Abd El Hamid Aly Hamdy

Professor of chemistry of natural and microbial products Department, Pharmaceutical and drug industries Division, National research center

Prof. Dr. Amal Ahmed Ibrahim Mekawey

Professor at regional center of mycology and biotechnology, Al-Azhar University

> Department of Microbiology Faculty of Science Ain Shams University (2018)

Approval sheet

Antifungal Activities of Some Plant Extracts Against Pathogenic Fungi

By Ereny Atef Wadee

B.Sc. Microbiology, Faculty of Science, Ain Shams University, 2011

Supervisors

Approved

Prof. Dr. Saadia Mohamed Easa

Professor assistant of Microbiology, Faculty of Science, Ain Shams University.

Prof. Dr. Abd El Hamid Aly Hamdy

Professor of chemistry of natural and microbial products department, Pharmaceutical and drug industries research division, National research center

Prof. Dr. Amal Ahmed Ibrahim Mekawey

Professor at regional center of mycology and biotechnology, Al-Azhar University

Examination committee

Prof. Dr. Mohamed Abd El Maksoud Rezk

Professor of Microbiology, Faculty of Science, Cairo University

Prof. Dr. Mohamed Farouk Ghaly

Professor of Microbiology, Faculty of Science, Zagazig University

Prof. Dr. Saadia Mohamed Easa

Professor assistant of Microbiology, Faculty of Science, Ain Shams University

Prof. Dr. Abd El Hamid Aly Hamdy

Professor of chemistry of natural and microbial products department, Pharmaceutical and drug industries research division,

National research center

ACKNOWLEDGEMENT

First and foremost, All the praise and thanks to **Allah** for assisting me to finish this work.

I would like to express my thanks to my supervisor Dr. Saadia M. Hassanein Easa, Professor of Microbiology, Department of Microbiology, Ain Shams University, for her help, encouragement, and continuous advice. I am extremely grateful for your supervision.

A great thanks to Dr. **Abd El Hamid Aly Hamdy**, Professor of chemistry of natural and microbial products department, Pharmaceutical and drug industries research devision, National research center, for his supervision, support, encouragement, valuable advices and constant help.

I wish to express my thanks to Dr. Amal Ahmed Ibrahim Mekawey, Professor at regional center mycology and biotechnology, Al-Azhar University, for her care and help.

A deep thank to **Microbiology Department** and all **my Colleagues** in microbiology department for their assistance, support and for providing a suitable environment during my work.

Finally, I want to express my deepest thanks to my mother, my father, my sisters and my brother for their love, help and support over the years, special thanks to Peter my husband for his continuous support and help.

Dedication

I dedicate this work to

My mother

My father

My dear sisters

My brother

My husband

List of Contents

Title	page	
Abstract		
Aim of work	1	
Introduction	2	
Review of literature		
1. History of bioactive compounds in plants	3	
2. Definition of bioactive compounds	6	
3. Plants and their properties	7	
(a) Pomegranate (<i>Punica granutam</i>)	7	
(b) Castor bean or castor-oil-plant (Ricinus communis)	12	
(c) Aloe vera	16	
(d) Fennel (Foeniculum vulgare)	20	
(e) Allium ampeloprasum var. Kurrat	24	
4. Parameters affect antimicrobial activity of plant extracts	26	
(a) Plant material		
(b) Extraction techniques	27	
(c) Extraction solvent	34	
(d) Antifungal technique.	37	
(e) Solvent for Testing.		
(f) Growth medium and microorganism tested.		
5. Classes of bioactive compounds and their antifungal activity		
(a) Terpenoids (or isoprenoids)	45	
(b) Alkaloids	46	
(c) Phenolic compounds		
(d) Flavonoids	47	
(f) Tannins	48	
(g) Saponins	49	
(h) Quinones.	49	
(i) Coumarines.	49	
Materials and Methods		
Materials		
1. Media used	58	

2. Staining dye	59		
3. Plant material			
4. Solvents.			
5. Chromatography			
Methods			
1. Collection of soil sample	61		
2. Isolation of fungi by hair baiting technique			
3. Identification of the fungal isolates			
3.1 Cultural characteristics			
3.2 Microscopic characteristics by slide culture technique	63		
4. Preparation of plant material.	64		
5. Preparation of plant extracts	64		
6. Preparation of tested extracts			
7. Fungal inoculum preparation.	68		
8. Antifungal activity of crude extract by well diffusion method	68		
9. Determination of the active components of the potent extracts	69		
9.1. Extraction of the most potent plant material			
9.2. Column chromatography			
9.3. Thin layer chromatography			
9.4. Antifungal activity of fractions by well diffusion method			
9.5. Gas Chromatography- Mass Spectrum Analysis (GC-MS)			
Results			
1. Isolation of fungi by hair baiting technique	72		
2. Identification of the fungal isolates.	73		
3. Crude extracts of plant material	83		
4. Antifungal activity of plant extract by well diffusion method	85		
5. Determination of the active components of the potent extracts	98		
Discussion	126		
Summary	142		
References	146		
Arabic summary	1		

List of Tables

Title	Page
Table (1): Example of some extracted bioactive compounds by different solvents	37
Table (2): Active constituents have antimicrobial activity from natural origin.	
Table (3): Antifungal activity of compound from natural origin	54
Table (4): Different plant parts used for screening the antifungal activity	60
Table (5): Isolated fungi and their site of isolation	74
Table (6): The crude extracts yield% from tested plants	84
Table (7): Antifungal activity of crude extracts of of <i>Foeniculum vulgare</i> (Fennel), <i>Aloe vera</i> and <i>Ricinus communis</i> (Castor bean)	87
Table (7): Antifungal activity of crude extract of Punica granatum (pomegranate)	88
Table (8): antifungal activity of crude extract of Allium ampeloparsum var kurrat (kurrat)	91
Table (9): Phytochemical compounds identified in hexane: ethyl acetate fraction (1:9) of kurrat (Allium ampeloprasum var. Kurrat)	100
Table (10): Phytochemical compounds identified in Ethyl acetate: ethanol (9:1) fraction of pomegranate (Punica granatum)	112

List of Figures

	page
Figure (1):Hexane extracts of tested plants: (A) Alliumampeloprasum var.Kurrat (kurrat) (B) Aloe vera (C)Foeniculum vulgare (Fennel) (D) Punica granatum(Pomegranate) (E) Ricinus communis (Castor bean)	65
Figure (2): Ethyl acetate extracts of tested plants: (A) Allium ampeloprasum var. Kurrat (kurrat) (B) Aloe vera (C) Foeniculum vulgare (Fennel) (D) Punica granatum (Pomegranate) (E) Ricinus communis (Castor bean)	66
Figure (3): Ethanol 80% extracts of tested plants: (A) Allium ampeloprasum var. Kurrat (kurrat) (B) Aloe vera (C) Foeniculum vulgare (Fennel) (D) Punica granatum (Pomegranate) (E) Ricinus communis (Castor bean)	67
Figure (4): Positive results of hair baiting technique of soil from different places	72
Figure (5): Negative results of hair baiting technique of soil from different places.	73
Figure (6): <i>Microsporum gypseum</i> (A) Culure characteristics (B) Microscopic characteristics (C) Macroconidia 400x (D) Microconidia 400x	78
Figure (7): <i>Microsporum boullardii</i> (A) Culure characteristics (B) Microscopic characteristics (C) Macroconidia 400x (D) Microconidia 400x	79

Figure (8): Trichophyton mentagrophytes (A) Culure	
characteristics of downy type (B) Microconidia of downy type	
400x (C) Culure characteristics of granular type (D)	80
Microconidia of granular type 400x (E) Chlamydospores of	
granular type 400x	
Figure (9): Trichophyton terrsetre (A) Culure characteristics (B)	
Microscopic characteristics (C) Macroconidia 400x (D)	81
Microconidia 400x (E) Chlamydospores 400x	01
Figure (10): Trichophyton verrucosum (A) Culure	
characteristics (B) Microconidia 400x (E) Chlamydospores	82
400x	
Figure (11): Antifungal activity of crude extracts of <i>Punica</i>	
granatum (pomegranate)	89
Figure (12): Antifungal activity of ethanolic extract of <i>Punica</i>	
granatum (pomegranate)	90
Figure (13): Antifungal activity of control drug (itraconazole)	90
Figure (14): Antifungal activity of crude extracts of Allium	
ampeloparsum var kurrat (kurrat)	92
Figure (15): Antifungal activity of hexane extract of Allium	0.7
ampeloparsum var kurrat (kurrat)	93
Figure (16): Antifungal activity of ethanolic extract of Allium	
ampeloparsum var kurrat (kurrat)	93
Figure (17): Antifungal activity of ethanolic crude extract of	
Punica granatum (pomegranate) against fungi (A) Microsporum	0.4
gypseum (B) Microsporum boullardii (C) Trichophyton	94
mentagrophytes (1) (D) Trichophyton mentagrophytes (2) (E)	

Trichophyton terrsetre (F) Trichophyton	
verrucosum	
Figure (18): Antifungal activity of hexane crude extract of	
Allium ampeloparsum var kurrat (kurrat) against fungi (A)	
Microsporum gypseum (B) Microsporum boullardii (C)	
Trichophyton mentagrophytes (1) (D) Trichophyton	95
mentagrophytes (2) (E) Trichophyton terrsetre (F) Trichophyton	
verrucosum	
Figure (19): Antifungal activity of ethanolic crude extract of	
Allium ampeloparsum var kurrat (kurrat) against fungi (A)	
Microsporum gypseum (B) Microsporum boullardii (C)	
Trichophyton mentagrophytes (1) (D) Trichophyton	96
mentagrophytes (2) (E) Trichophyton terrsetre (F) Trichophyton	
verrucosum	
Figure (20): Antifungal activity of control drug (Itraconazole)	
against fungi (A) Microsporum gypseum (B) Microsporum	
boullardii (C) Trichophyton mentagrophytes (1) (D)	97
Trichophyton mentagrophytes (2) (E) Trichophyton terrsetre (F)	
Trichophyton verrucosum	
Figure (21): GC/MS chromatogram of hexane: ethyl acetate	
(1:9) fraction of kurrat (Allium ampeloprasum var.	99
Kurrat)	
Figure (22): GC/MS chromatogram of Ethyl acetate: ethanol	
(9:1) fraction of pomegranate (<i>Punica granatum</i>)	111

List of Abbreviations

LDL	Low-Density Lipoprotein
DPPH	2,2-diphenyl-1-picrylhydrazyl
ABTS	2,2'-azinobis-3-ethylbenzothiazoline-6-sulfonic acid
UAE	ultrasound assisted extraction
MAE	microwave-assisted extraction
SFE	supercritical fluid extraction
PLE	Pressurized liquid extraction
DMSO	dimethyl sulfoxide
SDA	Sabouraud dextrose agar
GC/MS	Gas Chromatography- Mass Spectrum

ABSTRACT

Abstract

Soil samples were collected from different localities in Cairo, and were assayed for keratinophilic fungi. Five species of fungi classified in two genera were isolated from Giza zoo (animal cages and parks), hospital, public Park, local market, primary school, club and garbage dumping site. Five plants were chosen to investigate their antifungal activity against five isolated dermatophytes: Microsporum gypseum, Microsporum boullardii, Trichophyton mentagrophytes, Trichophyton terrsetre Trichophyton verrucosum. The tested plants were Punica granatum (Pomegranate), Aloe vera, Foeniculum vulgare (Fennel), Allium ampeloprasum var. Kurrat (kurrat) and Ricinus communis (Castor bean). Plant extracts were prepared by three different solvents, hexane, ethyl acetate and 80% ethanol. The study shows that ethanolic extract of Punica granatum (Pomegranate), hexane and ethanolic extract of Allium ampeloprasum var. Kurrat (kurrat) were effective against most of the tested organisms. Ethanolic extract of pomegranate and hexane extract of kurrat were chromatographed by column chromatography. Fractions from column chromatography were tested for antifungal activity. Ethyl acetate: ethanol fraction (9:1) of pomegranate (Punica granatum) and hexane: ethyl acetate fraction (1:9) of kurrat (Allium ampeloprasum var. Kurrat) showed antifungal activity against the fungal strains. These

fractions were analyzed by Gas Chromatography- Mass Spectrum (GC/MS). The analysis revealed that thirty-nine compounds from pomegranate and forty compounds from kurrat were identified. Several of these compounds were responsible for the antifungal activity found in the extracts against the fungal strains. Many of compounds present in the hexane kurrat extract are of organosulfer origin while pomegranate ethanolic extract revealed many compounds of diverse chemical structure; viz. 2H-pyran-2-one, pyridine, anthraquinones, phenanthrene, benzofuran, nonan-2-one, thiophenes, phenanthrolines, cholestane, calixarenes, flavone and anthracene.

Aim of the work