سامية محمد مصطفى

شبكة المعلومات الحامعية

بسم الله الرحمن الرحيم

-Caro-

سامية محمد مصطفي

شبكة العلومات الحامعية

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

سامية محمد مصطفى

شبكة المعلومات الجامعية

جامعة عين شمس

التوثيق الإلكتروني والميكروفيلم

قسو

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة يعيدا عن الغيار

سامية محمد مصطفي

شبكة المعلومات الجامعية

المسلمة عين شعور المسلمة عين شعور المسلمة عين شعور المسلمة عين شعور المسلمة ا

سامية محمد مصطفى

شبكة المعلومات الحامعية

بالرسالة صفحات لم ترد بالأصل

A THESIS ENTITLED

CHEMICAL MODIFICATION OF CHITOSAN BY GRAFTING TECHNIQUE.

SUBMITTED BY

DOAA HASSAN ABD ELAAL

(B.Sc., Chemistry 1999)

For

The partial fulfillment of

The Degree of Master of Science

Department of Chemistry

Faculty of Science

University of Cairo

2005

Ç.

B 70- E7

APPROVAL SHEET FOR SUBMISSION.

Title of the M.Sc. Thesis:

"Chemical modification of Chitosan by grafting technique."

Name of Candidate: Doaa Hassan Abd Elaal Hassan.

This thesis has been approved for submission by the supervisors:

1) Prof. Dr. Magdi Sabaa W. Farag.

Signature:

2) Prof. Dr. Gamal Riad Saad.

Signature: Gamul R. Sand

3) Dr. Emad Hamdy Orabi.

Signature:

Prof. Dr. Rifaat H. Hilal.

Chairman of Chemistry Department.
Faculty of Science,
Cairo University.

Ente

Abstract.

- Name: Doaa Hassan Abd El Aal.
- Title of the thesis: Chemical Modification of Chitosan by Grafting Technique.
- **Degree:** M.Sc. unpublished Master of Science Thesis, Faculty of Science-Cairo University-2005.

Graft Copolymerization of Glycidyl methacrylate (GMA), Methacrylic acid (MAA), Itaconic acid (IA) and 2-vinyl pyrrolidone (VP) onto Chitosan was carried out using potassium persulphate as an initiator.

The effect of the reaction variables such as; monomer concentration, Initiator Concentration, Time and Temperature on the extent of grafting was studied systematically.

Values for the grafting percentages up to 770 %, 286 %, 68% and 67 % for Chitosan-g-PGMA, Chitosan-g-PMAA, Chitosan-g-PIA and Chitosan-g-PVP, respectively, were reached. The graft copolymers are characterized by FT-IR Spectroscopy, Scanning electron microscope (SEM), Thermogravimetric analysis and solubility test.

It was observed that the solubility of Chitosan in organic acids was reduced after grafting. Moreover, a reproducible high swelling capacity of Chitosan-g-PMAA, Chitosan-g-PIA and Chitosan-g-PVP in distilled water as well as in buffer solutions at pH 4 and pH 10 was observed.

The swelling at equilibrium is highly dependent on the copolymer composition and pH. Chitosan-g-PGMA didn't swell due to the hydrophobic nature of PGMA chains. The adsorption of Cu²⁺ and Ni²⁺ ions in buffer solution onto Chitosan-graft copolymers was examined. The results showed that the adsorption of Cu²⁺ is greater than Ni²⁺ ions.

The results of the adsorption of the dye indicate that the adsorption of the dye is higher in Chitosan-graft-copolymers in comparison with Chitosan and the adsorption is higher with basic dye than with acidic one.

• Key words:

Chitosan, Graft Copolymers, Glycidyl methacrylate, Methacrylic acid, Itaconic Acid, 2-Vinyl Pyrrolidone, Thermal analysis, Swellability, Metal uptake.

Cairo University

Faculty of Science.

Department of Chemistry

To whom it may concern

Besides the work carried in this thesis, the candidate *DOAA HASSAN ABD ELAAL* had studied the following post-graduate courses during the academic year 2000-2001 and passed their exams successfully.

- 1. Heterocyclic Chemistry.
- 2. Organic Spectroscopy.
- 3. Advanced Physical Organic Chemistry.
- 4. Natural Products.
- 5. Biochemistry.
- 6. Polymer Chemistry.
- 7. Designing Organic Chemistry.
- 8. Organic Photochemistry.
- 10. Methods of Elucidation of Molecular Structure.
- 11. Advanced Analytical Chemistry.
- 12. Dyes.
- 13. Quantum Chemistry.
- 14. Elective Course (Explosive).
- 15. Mathematics and Scientific Computations.
- 16. Functional Group Analysis.
- 17. Carbohydrates Chemistry.
- 18. Foreign Language (German).

Prof. Dr.Rifaat H. Hilal

Chairman of the Chemistry Department.

Park

CONTENTS.

CHAPTER (1).	Page
Literature Survey	1
Chitin	1
Occurrence of Chitin	1
Chitosan	3
Properties of Chitosan	4
Chemical Modifications of Chitosan	7
Modification by Grafting Techniques	
Methods of Grafting	
Physical Method	14
Chemical Method	
Various Radical and Photo Induced Methods	23
Novel Redox Initiators	25
Controlling Factors of Grafting	26
Applications of Chitosan	28
CHAPTER (2).	
Materials and Experimental Techniques	33
Preparation of graft copolymerization of chitosan	33
Swelling experiments	36
Adsorption of Metal ions experiments	36
Dyes uptake experiments	37

CHAPTER (3).

Results and Discussion	38
Arguments for the Grafting Process	73
Infra-red spectroscopy	73
Scanning Electron Microscopy	79
Thermal analyses	84
Solubility of chitosan and chitosan grafted copolymers	92
Swelling behaviour	93
Adsorption Properties	111
Dye uptake	117
CHAPTER (4). References	110
CHAPTER (5).	119
Summary and General conclusions	128
Summary in Arabic	

ACKNOWLEDGEMENT.

The author wishes to express her sincere gratitude to *prof. Dr. Magdy Sabaa W*.

Farag professor of polymer chemistry for his supervision and directions during the course of work and for his valuable advice. Also all deep gratitude and real appreciation to *Prof. Dr. Gamal Riad saad* professor of physical chemistry for his supervision and continuous guidance. Also for *Dr. Emad Hamdy Orabi* for his advice. Also all my thanks to *Dr. Riham Rashad* for her continuous help. And all my sincere gratitude for my father, my mother, and my sisters.

DOAA HASSAN ABD ELAAL.

Aim of the Work

Aim of the work.

There has been a growing interest in research devoted to the modification of natural polysaccharide by incorporating specific polymers to bring about changes in their physical and chemical properties.

Chitosan is the modified N-deacetylated chitin. Much attention has been paid to chitosan because it contains both amine and hydroxyl groups, which can easily be modified chemically to produce a wide range of derivatives.

The target of the present work is:

- 1-The chemical modification of chitosan through grafting it with various vinyl functionalized available monomers such as glycidyl methacrylate, itaconic acid, methacrylic acid and vinyl pyrrolidone onto chitosan
- 2-The Investigation for the effect of reaction conditions such as **monomer** concentration, initiator concentration, temperature and time of grafting on the graft parameters such as grafting yield, amount of homopolymer formed, and grafting efficiency.
- 3- The Characterization of chitosan grafted copolymers by **thermal** and **spectroscopic** analyses and by **scanning electron microscopy**.
- 4- The effect of modification of chitosan by graft copolymerization on its dye uptake, metal chelation, swellability, solubility....., etc.

Chapter (1): Literature Survey