Ain Shams University Faculty of Science Chemistry Department

Studying the inhibition efficiency of the synthesized novel surfactants on the corrosion of heat exchanger tubes during chemical cleaning

A Thesis Submitted By

Khalil Mohamed Khalil Mohamed

(M.Sc., 2015)

Department of Chemistry - Faculty of Science Benha University

For

The Award of the Ph.D. Degree of Science in Chemistry

To

Department of Chemistry – Faculty of Science Ain Shams University

Ain Shams University Faculty of Science Chemistry Department

Studying the inhibition efficiency of the synthesized novel surfactants on the corrosion of heat exchanger tubes during chemical cleaning

A Thesis Submitted By

Khalil Mohamed Khalil Mohamed

This thesis has been approved for submission by the supervisors.

Prof. Dr. / Sayed Sabet Abd El Rehim

Signature:

Prof. Dr / Mohamed Abd El Azim Hegazy

Signature:

Dr / Mohamed Ahmed Abd El-Hay

Signature:

APPROVAL SHEET FOR SUBMISSION

Title of Thesis: "Studying the inhibition efficiency of the synthesized novel surfactants on the corrosion of heat exchanger tubes during chemical cleaning"

Name of the Candidate: Khalil Mohamed Khalil Mohamed

Examiners Committee

Prof. Dr. /Sayed Sabet Abd El-Rehim

Signature:

Prof. Dr. / Mohammed Abd-El Azim Hegazy

Signature:

Prof. Dr. / Mohamed Mahmoud Hefny

Signature:

Prof. Dr. / Mohamed Mohsen Bader El Sabbah

Signature:

Head of Chemistry Department.

Faculty of Science- Ain Shams University.

Prof. Dr.\ Ibrahim Ali Badr

Acknowledgement

At the beginning, praise is to Almighty Allah, the lord of the world, whose guidance, blessings and help enabled me to take my first step on the path of improving my knowledge through this humble effort. I would like to express my deepest gratitude, appreciation and respect to:

Prof. Dr. Sayed Sabet Abd El-Rehim Chemistry Department, Faculty of Science, Ain Shams University for his talented supervision and his terrific suggestion, helpful comments and encouragement during all stages of this work till the very end highly appreciated.

Prof Dr. Mohamed Abd El-azim Hegazy Prof. of applied organic chemistry, Egyptian Petroleum Research Institute "EPRI", for suggesting the research point, guidance, advice and valuable help throughout this work. His constructive criticism and comments from the initial conception to the end of this work are highly appreciated and the motivation that I need to succeed in the future.

Dr. Mohamed Ahmed Abd El-Hay chemistry department, Faculty of Science, Ain Shams University, for his supervision, pleasant guidance and continuous encouragement during the research.

Candidate

Khalil Mohamed

Dedication

To my lovely parents with my deep and sincere appreciation for their great efforts during my life and my studies.

To my Wife Thank you for encouragement and supporting.

To my Children Thank you for seeing the world through your tinny beautiful eyes.

To my friends Thank you for helping me.

Khalil Mohamed

Aim of the work

Aim and scope of the work

1. Synthesis of novel inhibitors

Preparation of two amides namely; N-(4-hydroxyphenyl)-3-(1H-indol-3-yl)-2-((1-methylpyrrolidin-2-ylidene)amino)propanamide (A 1) and (E)-2-((4-hydroxy-3-methoxybenzylidene)amino)-N-(4-hydroxyphenyl)-3-(1H-indol-3-yl)propanamide (A 2) and two cationic surfactants 1-dodecyl-3-(2-((1-dodecyl-1-methylpyrrolidin-1-ium-2-ylidene)amino)-3-((4-hydroxyphenyl)amino)-3-oxopropyl)-1H-indol-1-ium bromide (S 1) and (E)-1-dodecyl-3-(2-((4-hydroxy-3-methoxybenzylidene)amino)-3-((4-hydroxyphenyl)amino)-3-oxopropyl)-1H-indol-1-ium bromide (S 2).

2. Structure elucidation

Structure conformation of the prepared inhibitors carried out using different spectroscopic techniques:

- ¹HNMR spectroscopy.
- Mass spectroscopy.

3. Determination of the physical properties

Determination the surface properties for the prepared surfactants and the thermodynamic parameters of the micelle formation.

4. Application:

Evaluation the inhibition efficiency of the novel inhibitors for the corrosion of carbon steel and copper-zinc alloy in 1 M HCl solution during the acid cleaning of heat exchanger. The inhibition efficiency was determined using weight loss technique, potentiodynamic polarization and electrochemical impedance spectroscopy techniques. The thermodynamic parameters for corrosion and adsorption processes were calculated for interpretation the inhibition mechanism of the synthesized inhibitors. The surface morphology of carbon steel and copperzinc alloy samples was investigated by scanning electron microscopy (SEM). Also energy dispersive X-ray (EDX) survey spectra were used to determine which elements were present on the carbon steel surfaces before and after exposure to the inhibitors solutions.

	page
List of abbreviations	I
List of figures	III
List of tables	XIV
Chamter 1	
Chapter 1	
Introduction	
1.1. Corrosion	1
1.1.1. Corrosion definition	1
1.1.2. Corrosion theory	1
1.1.3. Corrosion importance	4
1.1.4. Corrosion types	8
1.1.5. Corrosion forms	9
1.1.5.1. General corrosion	9
1.1.5.1.1. Atmospheric corrosion	9
1.1.5.1.2. Galvanic corrosion	13
1.1.5.1.3. General biological corrosion	15
1.1.5.1.4. Molten salt corrosion	15
1.1.5.1.5. Liquid metals corrosion	17
1.1.5.1.6. High-temperature corrosion	18

1.1.5.2. Localized corrosion	18
1.1.6.5.1. Crevice corrosion	19
1.1.5.2.2. Filiform corrosion	21
1.1.5.2.3. Pitting corrosion	21
1.1.5.3. Mechanically assisted degradation	23
1.1.5.3.1. Erosion-corrosion	23
1.1.5.3.2. Fretting corrosion	24
1.1.5.3.3. Corrosion fatigue	25
1.1.5.4. Environmentally induced cracking	26
1.1.5.4.1. Stress – corrosion cracking (SCC)	26
1.1.5.4.2. Hydrogen Damage	27
1.1.6. Corrosion control	27
1.1.6.1. Protective coating	28
1.1.6.1.1. Organic coating	28
1.1.6.1.2. Inorganic coating	29
1.1.6.1.3. Metallic coating	29
1.1.6.2. Cathodic Protection	29
1.1.6.3. Anodic protection	30
1.2. Heat exchanger	30
1.2.1. Heat exchanger classification	31
1.2.2 Heat exchanger fouling	34

1.3. Chemical cleaning	35
1.4. Inhibitor	38
1.4.1. Classification of inhibitors	39
1.4.1.1. Passivating (anodic) inhibitors	40
1.4.1.2. Cathodic inhibitors	40
1.4.1.2. Organic inhibitors	41
1.4.1.3. Precipitation inhibitors	42
1.4.1.4. Volatile corrosion inhibitors	42
1.5. Adsorption isotherms	43
1.6. Surfactants	46
1.6.1. Surfactants definition	46
1.6.2. Classification of surfactants	47
1.6.2.1. Anionic surfactants	48
1.6.2.2. Cationic surfactants	48
1.6.2.3. Nonionic surfactants	49
1.6.2.4. Amphoteric (zwitterionic) surfactants	49
1.6.3. Micelle and critical micelle concentration (CMC)	50
1.6.4. Application of surfactants	53
Chapter 2	
Materials And Experimental Methods	
2.1. Materials	54

2.2. Chemical composition of carbon steel and copper alloy samples	55
2.3. Synthesis of Inhibitors	55
2.3.1 Synthesis of amide (A1)	55
2.3.2 Synthesis of cationic surfactant (S1)	57
2.3.3 Synthesis of amide (A2)	57
2.3.2 Synthesis of cationic surfactant (S2)	60
2.4. Structural confirmation of the prepared inhibitors	60
2.5. Solutions	61
2.5.1. Corrosive medium	61
2.5.2. Inhibitor solution	61
2.6. Experimental techniques	61
2.6.1. Weight loss method	62
2.6.2. Electrochemical techniques	63
2.6.3. Scanning Electron Microscopy	67
2.6.4. The surface tension measurements	67
2.6.5. Conductance measurements	68
Chapter 3	
Results and Discussion	
3.1. Chemical structure confirmation of the synthesized inhibitors	
3.1.1. ¹ HNMR	70
3.1.1.1. ¹ HNMR for (A1)	70

3.1.1.2. ¹ HNMR for (A2)	70
3.1.1.3. ¹ HNMR for (S1)	71
3.1.1.4. ¹ HNMR for (S2)	71
3.1.2. Mass spectroscopy	76
3.1.2.1. Mass spectroscopy for (A1)	76
3.1.2.2. Mass spectroscopy for (A2)	76
3.1.2.3. Mass spectroscopy for (S1)	76
3.1.2.4. Mass spectroscopy for (S2)	77
3.2. Evaluation of inhibition efficiency of the prepared inhibitors in	
1M HCl solution for carbon steel	
3.2.1. Weight loss measurements	82
3.2.1.1. Effect of the concentration	82
3.2.1.2. Effect of the temperature	83
3.2.1.3. Adsorption behavior and thermodynamic parameters	87
3.2.2.1. Scanning Electron Microscopy (SEM) study	95
3.2.2.2. Energy dispersive X-ray (EDX)	99
3.2.3. Activation parameters	103
3.2.4. Polarization measurements	110
3.2.5. Electrochemical impedance spectroscopy (EIS)	117
3.3. Evaluation of inhibition efficiency of the prepared inhibitors in 1	
M HCl solution for copper alloy	

3.2.1. Weight loss measurements	131
3.2.1.1. Effect of the concentration	131
3.3.1.2. Effect of the temperature	132
3.3.1.3. Adsorption behavior and thermodynamic parameters	136
3.3.2.1. Scanning Electron Microscopy (SEM) study	143
3.3.2.2. Energy dispersive X-ray (EDX)	147
3.3.3. Activation parameters	151
3.3.4. Polarization measurements	158
3.3.5. Electrochemical impedance spectroscopy (EIS)	165
3.4. Surface active properties for the cationic surfactants S 1 and S 2	
3.4.1. Surface tension (γ)	177
3.4.2. Effectiveness (π_{CMC})	177
3.4.3. Surface excess ($\Gamma_{\rm max}$)	178
3.4.4. Minimum surface area (A_{\min})	178
3.4.5. Conductivity measurements	180
3.4.6. Standard free energy (ΔG^{o}_{mic})	180
3.4. Mechanism of inhibition	183
Conclusion	184
References	186
English summary	I
Arabic summary	1