

Synthesis and evaluation of some cationic surfactant derived from heterocyclic compounds as biocides

A Thesis

Submitted in partial fulfillment of the requirements for Ph.D. degree in Chemistry

BY

Nagwa E. Ebrahim

(M.Sc. CHEMISTRY)

Supervised by

Prof. Dr. Magda Ismail Marzouk

Professor of Organic Chemistry, Faculty of Science, Ain Shams University

Prof. Dr. Ismail Abd El Rahman Aiad

Professor and head of Petrochemicals Department, Egyptian Petroleum Research Institute

Dr. Soheir Ahmed Hamed Shaker

Lecture of Organic Chemistry, Faculty of Science, Ain Shams University

Dr. Salah Mahmoud Tawfik

Researcher of Petrochemicals, Petrochemicals Department, Egyptian Petroleum Research Institute

Faculty of Science Ain Shams University 2018

Approval Sheet

Title of thesis

Synthesis and evaluation of some cationic surfactant derived from heterocyclic compounds as biocides

Researcher Name:

Nagwa Ebrahim Ebrahim Elakabawy

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Ph.D. In Organic Chemistry, Chemistry Department, Faculty of Science, Ain Shams University

Approved by:

1- Prof. Dr. Magda Ismail Marzouk

Professor of Organic Chemistry, Faculty of Science, Ain Shams University

2- Prof. Dr.Ismail Abd El Rahman Aiad

Professor and head of Petrochemicals Department, Egyptian Petroleum Research Institute

3- Dr. Soheir Ahmed Hamed Shaker

Lecture of Organic Chemistry, Faculty of Science, Ain Shams University

4- Dr. Salah Mahmoud Tawfik

Researcher of Petrochemicals, Petrochemicals Department, Egyptian Petroleum Research Institute

Prof. Dr. Ibrahim H. A. Badr

Head of Chemistry department Faculty of Science, Ain shams University.

Faculty of Science Ain Shams University

Name: Nagwa Ebrahim Ebrahim Elakabawy

Scientific Degree: Ph. D. Degree in Science (Chemistry),

Organic chemistry

Department: Chemistry Department

Faculty: Faculty of Science

University: Ain Shams University

ABSTRACT

Title: Synthesis and evaluation of some cationic surfactant derived from heterocyclic compounds as biocides

By

Nagwa E. Ebrahim

Chemistry Department, Faculty of Science, Ain Shams University

Degree: Doctor of Philosophy in Organic Chemistry, Faculty of

Science, Ain Shams University, 2017.

Abstract

Development of effective anti-microbial agents has been hindered by the emergence of bacterial strains with multi-drug resistance. In this work, we report an efficient synthesis of silver nanoparticle (AgNP) by capping with a synthetic cationic surfactants-based heterocyclic antipyrine. The synthesized antipyrine cationic surfactants were characterized by FT-IR and ¹H-NMR and their AgNPs were also delineated by TEM, DLS and UV-vis techniques. These AgNPs-capped cationic surfactants have average particle size of ~15–30 nm. These surfactants could self-assemble to form micelles in an aqueous medium and the critical micelle concentration (CMC) values as well as the surface parameters were determined at 20, 40 and 60 °C. The synthesized

antipyrine cationic surfactants and their AgNPs were tested against growth of both Gram positive (*Bacillus subtilis* and *Staphyl. aureus*) and Gram negative (*Pseudomonas aeruginosa* and *E. coli.*) bacterial strains as well as fungi (*Candida albicans* and *Aspergillus niger*). It was found that the AgNPs significantly enhanced the biocidal activities of the synthesized antipyrine cationic surfactants. A strong structure-activity relationship was observed as a function of AgNPs functionality; providing guidance to activity prediction and rational design of effective antimicrobial nanoparticles. We propose that the antipyrine cationic surfactants-capped AgNPs can have potential biocidal application against pathogenic bacteria.

<u>Keywords:</u> Silver nanoparticles, heterocyclic antipyrine, cationic surfactants, surface activity, biocidal activities, Structure-activity

CONTENTSLIST OF ABBREVIATIONS LIST OF TABLES **LIST OF FIGURES ABSTRACT**

Content	Page
CHAPTER I: INTRODUCTION	
1.1. Surfactants	3
1.1.1 Classification of surfactants	3
1.1.1.1 Anionic surfactants	4
1.1.1.2. Cationic surfactants	7
1.1.1.3. Non- ionic surfactants	8
1.1.1.4. Zwitterionic surfactants	10
1.1.2. Adsorption of surface active agent	11
1. 1.3. Mechanism of adsorption	11
1.1.4. Factors influencing the adsorption at the interface	11
1. 1.5. Critical micelle concentration (CMC)	13
1.1.6. Applications of surfactants	15
1.2. Nanoparticles	16
1.2.1. Silver Nanoparticles	20
1.2.2. Common Applications of Silver Nanoparticles	24
1.2.3. Bactericidal Effects of Nano-Silver	26
1.3. Biocides	29
1.3.1. Types of biocides	30
1.4. Literature survey	34

1.4.1. Surfactants	34
1.4.2. Nanoparticles	47
1.4.3. Biocides	55
CHAPTER II: MATERIALS AND EXPERIMENTAL	66
TECHNIQUES	66
2.1. Materials	66
2.2 Synthesis	67
2.2.1. Synthesis of 4-aminoantipyrine Schiff bases (APB) and	67
(APC)	
2.2.2. Synthesis of antipyrine cationic Schiff bases surfactant	68
(APB8, APB12&APB16) and (APC8, APC12&APC16)	00
2.2.3. Preparation of the nanostructure of synthesized	68
antipyrine cationic surfactants with silver nanoparticles	00
2.3 Experimental techniques	69
2.4. Surface tension measurements	71
2.5. Antimicrobial test	71
CHAPTER III: RESULTS AND DISCUSSION	74
3.1. Characterization of the synthesized antipyrine	7.4
cationic surfactants	74
3.2. Characterization nanostructure of antipyrine cationic	0.4
surfactants	84
3.3. Surface Activity of the Antipyrine Cationic	02
Surfactants	92
3.3.1. Critical Micelle Concentration (CMC)	94

3.3.2. The effectiveness ($\pi_{\rm cmc}$)	96
3.3.3. The efficiency (Pc20)	97
3.3.4. The maximum surface excess ($\Gamma_{\rm max}$) and minimum	97
surface area (A _{min})	91
3.4. Micellization and Adsorption Thermodynamics	110
3.5. Effect of silver nanoparticles on the surface	112
parameters behavior	112
3.6. Biological Activity of the Synthesized Cationic	116
Surfactants and their Nanostructures	110
3.6.1. The Structure and Function of the Cell Membrane	116
3.6.2. Action Mode of the Synthesized Cationic Compounds	123
as Antimicrobial Agent	123
3.6.3. Antimicrobial-Chemical Structure Relationships of the	125
Synthesized Cationic Surfactants	123
SUMMARY AND CONCLUSION	131
REFERENCES	133
ARABIC SUMMARY	

LIST OF TABLES

Table 1	Chemicals used and their sources and grades	66	
Table 2	Size and Zeta potential of silver nanoparticles		
	using synthesized cationic surfactants	91	
Table 3	Surface parameters of antipyrine cationic		
	surfactants at 20, 40 and 60° C	108	
Table 4	Surface parameters of antipyrine cationic	200	
	surfactants nanostructures at 20, 40 and $60^{\circ}\mathrm{C}$	109	
Table 5	Thermodynamic parameters of antipyrine	20>	
	cationic surfactants at 20, 40 and 60° C	114	
Table 6	Thermodynamic parameters of antipyrine		
	cationic surfactants nanostructures at 20, 40 and		
	60° C	115	
Table 7	Antimicrobial activity of the synthesized		
	antipyrine cationic surfactants against		
	pathogenic bacteria and fungi	128	
Table 8	Antimicrobial activity of the synthesized	120	
	antipyrine cationic surfactants capped silver		
	nanoparticles against pathogenic bacteria and		
	fungi	129	

LIST OF FIGURES

Figure 1	Schematic illustration of the various types	4
	of surfactants	
Figure 2	Arrangement of surfactant molecules to	14
	form micelles	
Figure 3	Structures of surfactant micelles at	15
	concentration over CMC	
Figure 4	Schematic of gram-negative bacterial cell	27
	wall	
Figure 5	Internal structure of (a) healthy E. coil cell	28
	and (b) silver-treated E.coil cell	
Figure 6	FTIR spectrum of compound (APB8)	78
Figure 7	FTIR spectrum of compound (APB12)	78
Figure 8	FTIR spectrum of compound (APB16)	79
Figure 9	FTIR spectrum of compound (APC8)	79
Figure 10	FTIR spectrum of compound (APC12)	80
Figure 11	FTIR spectrum of the compound (APC16)	80
Figure 12	¹ H-NMR spectrum of compound (APB8)	81
Figure 13	¹ H-NMR spectrum of compound (APB12)	81
Figure 14	¹ H-NMR spectrum of compound (APB16)	82
Figure 15	¹ H-NMR spectrum of compound (APC8)	82
Figure 16	¹ H-NMR spectrum of compound (APC12)	83
Figure 17	¹ H-NMR spectrum of the compound	83
	(APC16)	

Figure 18	UV Spectra of the nanostructure of	88
	synthesized cationic surfactants derived	
	from antipyrine with silver nanoparticles	
Figure 19	TEM images and DLS of the nanostructure	89
	of synthesized cationic surfactants (APB8,	
	APB12 and APB16)	
Figure 20	TEM images and DLS of the nanostructure	90
	of synthesized cationic surfactants (APC8,	
	APC12 and APC16)	
Figure 21	Surface tension-concentration profile of	102
	compound (APB8 and APC8) at 20, 40 and	
	60° C	
Figure 22	Surface tension-concentration profile of	103
	compound (APB12 and APC12) at 20, 40	
	and 60° C	
Figure 23	Surface tension-concentration profile of	104
	compound (APB16 and APC16) at 20, 40	
	and 60° C	
Figure 24	Surface tension-concentration profile of	105
	compound (APB8Ag and APC8Ag) at 20,	
	40 and 60° C	
Figure 25	Surface tension-concentration profile of	106
	compound (APB12Ag and APC12Ag) at	
	20, 40 and 60° C	

Figure 26	Surface tension-concentration profile of	107
	compound (APB16Ag and APC16Ag) at	
	20, 40 and 60° C	
Figure 27	Chemical structure of the steroids	119
Figure 28	Distribution of steroids in the cell	119
	membrane	
Figure 29	Teichoic acid derivatives in the cell	120
	membrane	
Figure 30	The structure of the peptidoglycan in the	123
	different bacterial genera	
Figure 31	Structure of the bacterial cell walls	124
Figure 32a	Antimicrobial activity of the synthesized	129
	cationic surfactants derived from antipyrine	
Figure 32b	Antimicrobial activity of the synthesized	130
	cationic surfactants nanostructure	
Figure 33	Schematic representation of possible	130
	mechanism of antimicrobial activity of the	
	synthesized cationic surfactants	

LIST OF ABBREVIATIONS

Symbol	Abbreviation	unit
С	Molar concentration	ML ⁻¹
γ	Surface tension	mNm ⁻¹
П	Effectiveness	mNm ⁻¹
Pc ₂₀	Efficiency	ML ⁻¹
CMC	Critical micelle concentration	mML ⁻¹
$\pi_{ m cmc}$	The effectiveness	mNm ⁻¹
$\gamma_{\rm o}$	surface tension of bi-distilled water	mNm ⁻¹
Yeme	surface tension of aqueous surfactant	mNm ⁻¹
/cmc	solution at critical micelle concentration	
Pc20	The efficiency	mNm ⁻¹
$\Gamma_{ m max}$	maximum surface excess	mol.cm ⁻²
A_{min}	minimum surface area	A ² molecule ⁻¹
ΔG	free energy	kJ/mol
ΔS	entropy	kJ.mol ⁻¹
		K ⁻¹
ΔΗ	enthalpy	Kcal.
411	Champy	mol ⁻¹

CONTENTSLIST OF ABBREVIATIONS LIST OF TABLES **LIST OF FIGURES ABSTRACT**

Content	Page
CHAPTER I: INTRODUCTION	
1.1. Surfactants	3
1.2.1. Classification of surfactants	3
1.2.1. Anionic surfactants	4
1.2.1. Cationic surfactants	7
1.2.1. Non- ionic surfactants	8
1.2.1. Zwitterionic surfactants	10
1.3. Adsorption of surface active agent	11
1. 3.1. Mechanism of adsorption	11
1.3.2. Factors influencing the adsorption at the interface	11
1. 4. Critical micelle concentration (CMC)	13
1.5. Applications of surfactants	15
1.2. Nanoparticles	16
1.2.1. Silver Nanoparticles	20
1.2.2. Common Applications of Silver Nanoparticles	24
1.2.3. Bactericidal Effects of Nano-Silver	26
1.3. Biocides	29
3.1. Types of biocides	30
1.4. Literature survey	34

1.4.1. Surfactants	34
1.4.2. Nanoparticles	47
1.4.3. Biocides	55
CHAPTER II: MATERIALS AND EXPERIMENTAL	
TECHNIQUES	66
2.1. Materials	66
2.2 Synthesis	67
2.2.1. Synthesis of 4-aminoantipyrine Schiff bases (APB) and	67
(APC)	
2.2.2. Synthesis of antipyrine cationic Schiff bases surfactant (APB8, APB12&APB16) and (APC8, APC12&APC16)	68
2.2.3. Preparation of the nanostructure of synthesized	~ 0
antipyrine cationic surfactants with silver nanoparticles	68
2.3 Experimental techniques	69
2.4. Surface tension measurements	71
2.5. Antimicrobial test	71
CHAPTER III: RESULTS AND DISCUSSION	74
3.1. Characterization of the synthesized antipyrine	7.4
cationic surfactants	74
3.2. Characterization nanostructure of antipyrine cationic	0.4
surfactants	84
3.3. Surface Activity of the Antipyrine Cationic	02
Surfactants	92
3.3.1. Critical Micelle Concentration (CMC)	94