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Abstract 

Nanoparticle ferrite with the chemical formula 

Mg1−xZnxFe2O4 (where x=0.0, 0.1, 0.2, 0.3, 0.4 and 0.6) have 

been prepared by the sol-gel technique. The composition and 

purity of ferrite are hardly affected their properties. Therefore, 

the elemental concentration of these samples was measured by 

the X-ray fluorescence and thermal neutron activation analysis 

techniques to check the real composition of the prepared 

samples. The results of both methods were compared with each 

other and with the molecular ratios of the as-prepared samples. 

No existing elemental impurity was detected. 

The samples were characterized by X-ray diffraction 

(XRD) and Infrared analysis (IR).  Single-phase structure of 

these ferrites was confirmed using (XRD). All samples showed 

two absorption bands in the IR spectra,t and o, in the 

absorption range 550 and 400 cm
-1

, respectively. Transmission 

Electron Microscope (TEM) showed that the particle size of the 

samples lies in the range of (5.7–10.6 nm). The hysteresis 

studies revealed superparamagnetic behavior at room 

temperature for all samples. The dead layer thickness (t) was 

calculated and its effect on the magnetization and magnetic 

losses was discussed. The Specific Absorption Rate (SAR) in an 

alternating magnetic field operating at a frequency 198 kHz for 

these ferrites has been studied. It was found that the sample with 

x = 0.2 has the highest value of SAR although it does not has 

the highest value of saturation magnetization.  

Sample with the chemical formula Mg0.8Zn0.2Fe2O4 i.e. x 

= 0.2 was annealed at temperatures of 400, 600 and 800 
o
C for 4 

hours. No extra lines were observed in the XRD spectra for all 

annealed samples. The sample Mg0.8Zn0.2Fe2O4 ferrites showed 

superparamagnetic phase as that the as-prepared and annealed 

samples at 400 and at 600 
o
C, respectively. On the other hand, 

the annealed sample at 800 
o
C showed hysteresis behavior with 
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Hc = 7.89 mT and Mr = 5.86 emu/g. On annealing, up to 600 
o
C, 

SAR values decreased and above it, the SAR values increased. 

Moreover, the sample with x = 0.2 has been doped by Gd
3+

 

according to the chemical formula Mg0.8Zn0.2Fe2-yGdyO4 (where 

y = 0.025, 0.05, 0.075, and 0.1) and these samples were also 

prepared by sol-gel technique. XRD for all investigated samples 

confirmed single spinel phase structure. TEM analysis showed 

that the particle size of the samples lies in the range of (12–32 

nm). Mg0.8Zn0.2Fe2-yGdyO4 ferrite nanoparticles displayed 

superparamagnetic phase. The saturation magnetizations for the 

doped samples with Gd
3+ 

ions are lower than that of undoped 

one and decreased with the Gd
3+

contents.The SAR values also 

decreased after doping. 

Mg1−xZnxFe2O4and Mg0.8Zn0.2Fe2-yGdyO4 samples have 

been irradiated in the thermal neutrons channel of the Second 

Egyptian Research Reactor for short and long time tirr=10min 

and tirr=1h and doses 6.0x10
13

 and 3.6x10
14

 n/cm
2
, respectively. 

The used neutron flux was 10
11

n/cm
2
/sec. After short-time 

irradiation: a deformation and oxidization in XRD spectra have 

appeared. Moreover, there is an increasing in the saturation 

magnetization after irradiation for the investigated samples. The 

SAR values decreased after irradiation for all samples in spite of 

increasing the Ms. 


-
emitting radioisotopes have been produced by thermal 

neutron capture reaction in the nuclear reactor. These 

radionuclides may be useful to kill cancer cells via crossfire 

effect and could be employed besides the local hyperthermia of 

the magnetic materials.  
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