

Physics Department Faculty of Science Ain Shams University

Investigation of Physical Properties for Nanostructured Magnetic Materials Treated by Irradiation

A Thesis Submitted in Partial Fulfillment of the Requirement for Ph.D. Degree in Physics

Ismail Abd El-Rahim Ali Ahmad

MSc. 2011

Assistant Lecturer
Nuclear Physics Department – Cyclotron Project
Nuclear Research Center
Atomic Energy Authority

Supervised By

Prof. Dr. Adel Abd El-Sattar Prof. Dr. Ahmed Azzam Ahmed

Professor of Solid State Physics
Physics Department
Faculty of Science
Ain Shams University

Prof. Dr.Hesham Mohamed El-Sayed

Professor of Solid State Physics
Physics Department
Faculty of Science
Ain Shams University

Professor of Nuclear Physics Nuclear Physics Department Nuclear Research Center Atomic Energy Authority

Prof. Dr. Mohamed Eltabey Mohamed

Professor of Solid State Physics
Department of Basic Engineering
Science
Faculty of Engineering-Shebin El-Kom
Menoufiya University

2018

Physics Department Faculty of Science Ain Shams University

Approval Sheet

Degree: Doctor of Philosophy in Physics

Title: Investigation of Physical Properties for Nanostructured

Magnetic Materials Treated by Irradiation

Name: Ismail Abd El-Rahim Ali Ahmad

Supervision Committee:	<u>Signature</u>
Prof. Dr. Adel Abd El-Sattar	•••••
Prof. of Solid State Physics- Physics Department Faculty of Science -Air	n Shams University
Prof. Dr. Ahmed Azzam Ahmed	
Prof. of Nuclear Physics - Atomic Energy Authority	
Prof. Dr. Hesham Mohamed El-Sayed	•••••
Prof. of Solid State Physics- Physics Department Faculty of Science -Ai	n Shams University
Prof. Dr. Mohamed Eltabey Mohamed	•••••
Prof. of Solid State Physics -Faculty of Engineering-Shebin El-Kom- M	enoufiya University
Approval Committee:	<u>Signature</u>
Prof. Dr. Berlant Abd-Hamied khalifa	
Prof. of Solid State Physics Physics Department Faculty of Science -Air	n Shams University
Prof. Dr. Mustafa Mohamed El Sayed Mohamme	e d
Prof. of Physics- Physics Department Faculty of Education -Ain Shams Un	niversity
Prof. Dr. Adel Abd El-Sattar	
Prof. of Solid State Physics - Physics Department Faculty of Science - Ain	Shams University
Prof. Dr. Ahmed Hassan Azzam Prof. of Nuclear Physics - Atomic Energy Authority	
Prof. Dr./ Ferenc Ditrói	
Prof. of Nuclear physics, Institute for Nuclear research (ATOMKI), Debre	ecen, Hungary
Post Graduate Studies:	
Approval Stamp	
Thesis Has Been Approved on: /	2018
Faculty Council Approval: Univer	sity Council approval:
/ / 2018	/ / 2018

Acknowledgment

First and foremost praising to **Allah**, the most Beneficent, the most Merciful, who led me through this work, sustain me with help, guidance, the power and will to do this work.

I would like to express my deep gratitude to Prof. Add Abd El-Sattar Mohammed, Physics Department, Faculty of Science, Ain Shams, for his supervision, great interest, continuous help and valuable scientific discussions during this work.

I would like to express my deep gratitude to Prof. Ahmed Azzam Ahmed. Professor of Nuclear Physics – Nuclear Research Center - Atomic Energy Authority, for his supervision, selection of the topic of this work, planning this investigation, great interest, continuous help, friendship, valuable scientific discussions and all efforts spent by him during the different stages of this work.

I am eternally grateful and indebtedness Prof. Wesham Wohammed El-Sayed-Thysics Department, Faculty of Science, <u>Ain Shams</u>, for his direct supervision, continuous guidance, great assistance, interesting discussions and theoretical information of different fields related to this research.

I am sincerely grateful to Prof. Mohammed Eltabey Mohammed-Department of Basic Engineering Science, Faculty of Engineering, Monofia University, for his kind help, suggesting this work, his effective kind supervision, useful comments, valuable suggestions, friendship, and valuable discussions.

I would like to express my deep gratitude to Dr. Gehan Youssif Mohammed - Nuclear Research Center - Atomic Energy Authority, for her supervision, her great interest, continuous help, and valuable scientific discussions during this work.

Thanks are also for Prof. Mogahed Elabyad, <u>Head of the Cyclotron Facility</u>, Atomic Energy Authority, Inshas, Egypt for his kind treatment and for giving me the facility for doing this work.

Continually thanks must be given to my Wotherwho is nearly everything in my life, who gives me all things without waiting anything from me even thanking. My mother's prey and kind wishes led me to say that really this work can be thought to be hers not mine.

Deep thanks to my Sister for her continuous support especially during the thesis.

Great Thanks also to my dear Wife for her prey and kind wishes and I hope that we will be together... forever.

Special thanks to those who do not read this thank now my Sons, Muhammad and Adam, for their patient far me during that work.

In addition, I would like to express my thankfulness to all Members of Cyclotron Project-Atomic Energy Authority those were assistances me during this work.

Abstract

Nanoparticle ferrite with the chemical formula $Mg_{1-x}Zn_xFe_2O_4$ (where x=0.0, 0.1, 0.2, 0.3, 0.4 and 0.6) have been prepared by the sol-gel technique. The composition and purity of ferrite are hardly affected their properties. Therefore, the elemental concentration of these samples was measured by the X-ray fluorescence and thermal neutron activation analysis techniques to check the real composition of the prepared samples. The results of both methods were compared with each other and with the molecular ratios of the as-prepared samples. No existing elemental impurity was detected.

The samples were characterized by X-ray diffraction (XRD) and Infrared analysis (IR). Single-phase structure of these ferrites was confirmed using (XRD). All samples showed two absorption bands in the IR spectra, v_t and v_o , in the absorption range 550 and 400 cm⁻¹, respectively. Transmission Electron Microscope (TEM) showed that the particle size of the samples lies in the range of (5.7–10.6 nm). The hysteresis studies superparamagnetic revealed behavior at room temperature for all samples. The dead layer thickness (t) was calculated and its effect on the magnetization and magnetic losses was discussed. The Specific Absorption Rate (SAR) in an alternating magnetic field operating at a frequency 198 kHz for these ferrites has been studied. It was found that the sample with x = 0.2 has the highest value of SAR although it does not has the highest value of saturation magnetization.

Sample with the chemical formula $Mg_{0.8}Zn_{0.2}Fe_2O_4$ i.e. x=0.2 was annealed at temperatures of 400, 600 and 800 °C for 4 hours. No extra lines were observed in the XRD spectra for all annealed samples. The sample $Mg_{0.8}Zn_{0.2}Fe_2O_4$ ferrites showed superparamagnetic phase as that the as-prepared and annealed samples at 400 and at 600 °C, respectively. On the other hand, the annealed sample at 800 °C showed hysteresis behavior with

 H_c = 7.89 mT and M_r = 5.86 emu/g. On annealing, up to 600 °C, SAR values decreased and above it, the SAR values increased. Moreover, the sample with x = 0.2 has been doped by Gd^{3+} according to the chemical formula $Mg_{0.8}Zn_{0.2}Fe_{2-y}Gd_yO_4$ (where y = 0.025, 0.05, 0.075, and 0.1) and these samples were also prepared by sol-gel technique. XRD for all investigated samples confirmed single spinel phase structure. TEM analysis showed that the particle size of the samples lies in the range of (12–32 nm). $Mg_{0.8}Zn_{0.2}Fe_{2-y}Gd_yO_4$ ferrite nanoparticles displayed superparamagnetic phase. The saturation magnetizations for the doped samples with Gd^{3+} ions are lower than that of undoped one and decreased with the Gd^{3+} contents. The SAR values also decreased after doping.

 $Mg_{1-x}Zn_xFe_2O_4$ and $Mg_{0.8}Zn_{0.2}Fe_{2-y}Gd_yO_4$ samples have been irradiated in the thermal neutrons channel of the Second Egyptian Research Reactor for short and long time t_{irr} =10min and t_{irr} =1h and doses $6.0x10^{13}$ and $3.6x10^{14}$ n/cm², respectively. The used neutron flux was 10^{11} n/cm²/sec. After short-time irradiation: a deformation and oxidization in XRD spectra have appeared. Moreover, there is an increasing in the saturation magnetization after irradiation for the investigated samples. The SAR values decreased after irradiation for all samples in spite of increasing the M_s .

 β -emitting radioisotopes have been produced by thermal neutron capture reaction in the nuclear reactor. These radionuclides may be useful to kill cancer cells via crossfire effect and could be employed besides the local hyperthermia of the magnetic materials.

Contents

Contents	
Acknowledgement	
Abstract	II
Contents.	V
	•
List of figures	IX
List of tables	XIV
Chapter 1: Introduction and theoretical background	
1.1. Nanoscience and nanotechnology	1
1.2. Classifications of magnetic materials	3
1.2.1. Diamagnetic materials	4
1.2.2. Paramagnetic materials (PM)	5
1.2.3. Superparamagnetic materials	6
1.2.4. Ferromagnetic materials (FM)	10
1.2.5. Antiferromagnetic materials	11
1.2.6. Ferrimagnetic materials	13
a. Garnet ferrites	14
b. Hexagonal ferrites	15
c. Spinel ferrites.	15
d. Chemical composition and crystal structure	
of spinel ferrites	18
e. Theory of magnetic moments interactions	19
I. Super-exchange interaction	19
II. Double exchange interaction	21
III. Temperature dependence of the	
susceptibility	22
IV. Net Magnetic Moments of Ferrites	23
1.3. Hysteresis parameters (H-B loop)	26
1.4. AC heat generation mechanism	28
1.5. Benefits and risks in hyperthermia	32
1.5.1. Synergistic effect of hyperthermia and	
radiation	33
1.5.2. Interactions between hyperthermia and drugs	34
1.6. Choice of the magnetic materials	35
1.7. Neutrons and its effects on materials	35
1.7.1. Neutron Sources	35
1.7.2. Nuclear reactors	36
1.7.3. Neutron temperature	36
1.7.4. Interaction of Neutrons with Matter	37
a. Elastic Scattering Reaction	37
b. Inelastic Scattering Reaction	38
c Absorption Reaction	37

Contents

1.8. Neutron activation analysis	38
1.8.1. Neutron Activation Measurements	40
a. Qualitative Analysis in NAA	40
b. Quantitative Analysis	41
Chapter 2: Literature survey	
2.1. Preparation and characterization of doping	
Mg-ferrite	44
2.1.1. Ceramic method	44
2.1.2. Co-precipitation method	45
2.1.3. Sol-gel method	46
2.1.4. Ball milling method	47
2.1.5. Microwave method	47
2.2. Irradiation effect on ferrites	48
2.2.1. Ions beam irradiation	48 52
2.2.2. Gamma rays irradiation	
2.2.3. Neutron irradiation	55 55
2.3. Neuron activation analysis	55 57
2.4. Hyperthermia and radiotherapy	5 <i>i</i>
2.5. Aim of the work Chapter 3: Experimental techniques	30
Onaptor O. Expormiontal tooliniquos	
3.1. Preparation of the samples	60
3.1.1. Sol-Gel technique	60
3.2.Characterization Parameters	62
32.1. X-Ray Fluorescence (XRF)	62
3.2.2. X-ray diffraction	64
3.2.3. Infrared Spectroscopy	65
3.2.4. Particle size and morphology	66
3.2.5. Vibrating sample magnetometer	68
3.2.6. Specific Absorption Rate (SAR)	69
3.3. Irradiation of the samples and Neutron Activation	0)
Technique	71
3.3.1. Irradiation of the samples	71
3.3.2. Neutron activation analysis (NAA)	72
Chapter 4: Results and discussion	
4.1. Samples characterization	75

Contents

4.1.1. Elemental composition analysis	76
a -ray fluorescence analysis	76
4.1.2. Structure analysis	81
a- X-ray diffraction analysis	81
b. Infrared (IR) Spectral Analysis	83
c. Particle size and morphology	90
4.2. Magnetic properties	93
4.2.1. Hysteresis analysis	93
4.2.2. Thickness of magnetically dead layer	97
4.2.3. SAR calculation.	102
4.3. Annealing effect on the Mg _{0.8} Zn _{0.2} Fe ₂ O ₄ sample	105
4.3.1. X-ray diffraction spectrum analysis	105
4.3.3. Lattice parameter	107
4.3.2. Particle size and morphology	108
4.4. Magnetic properties	111
4.4.1. Hysteresis analysis	111
4.4.2. Thickness of magnetically dead layer	112
4.4.3. SAR calculation of the annealed sample	113
4.5. Doping of the Mg _{0.8} Zn _{0.2} Fe ₂ O ₄ sample by Gd ³⁺	
ions	116
4.5.1. X-ray diffraction spectrum analysis	116
4.5.2. Particle size and morphology	118
4.5.3. Magnetic properties	120
a. Hysteresis analysis	120
b. SAR calculations	121
4.6. Irradiation of the Mg _{1-x} Zn _x Fe ₂ O ₄ samples	124
4.6.1 Elemental composition analysis	124
4.6.2. Samples characterization	128
a. XRD analysis	128
b. Lattice parameter	133
4.6.2. Magnetic properties	136
a. Magnetization	136
b. SAR calculation	139
4.8. The produced isotopes due to irradiation	142
5. Conclusion	146
6. References	149
7. Appendices	158
الملخص العربي ٨.	170

Figure No.	Title	Page
Fig. (1.1).	Percentage of surface atoms Vs. Palladium	
	cluster diameter	3
Fig. (1.2).	Mechanism of atomic diamagnetism	5
Fig. (1.3).	(a) The atomic spins of paramagnetic material	
	at a finite temperature. (b) Magnetization	
	change as a function of magnetic field	6
Fig. (1.4).	Superparamagnetic and ferromagnetic	
	magnetization curves	8
Fig. (1.5).	Coercivity vs. particle size. The numerical	
	values of particle size are a reference of the	
	order of magnitude for the critical size values at	
	room temperature; they vary for each material	9
Fig. (1.6).	Parallel alignment of spins in ferromagnetic	
	materials	11
Fig. (1.7).	(a). Magnetization curve of ferromagnetic	
	material (b) Variation of spontaneous	
	magnetization M_s with temperature.	11
Fig. (1.8).	Antiparallel arrangement of spins in	
F' (1.0)	antiferromagnetic lattice	12
Fig. (1.9).	Variation of $1/\chi$ vs. T in antiferromagnetic	10
F' (1.10)	material	13
Fig. (1.10).	Spin arrangement of ferrimagnetic crystal, A	1.4
F' (1.11)	and B are the tetrahedral and octahedral sites	14
Fig. (1.11).	Mand $1/\chi$ versus T curves in ferrimagnetic	1.4
F' (1.10)	materials	14
Fig. (1.12).	Arrangement of metal and oxygen ions in	16
Fig. (1.12)	spinel ferrite unit cell	16
Fig. (1.13).	(a) Cation on the tetrahedral-site (b) Cation on	
	octahedral lattice-site (c) Eight octants of a unit	
	cell of spinel ferrites (d) Oxygen and metal ions in two octants of unite cell	17
Fig. (1.14).	The p-orbit of the O ² -ion through which	1/
1 1g. (1.14).	exchange interaction acts between the spins on	
	the magnetic ions M_1 and M_2	20
Fig. (1.15).	Double exchange interaction (a) Before	20
11g. (1.1 <i>3)</i> .	exchange and (b) After exchange, the jumped	
	electrons are shown ringed	21
Fig. (1.16).	The 1/χ vs. T curves of ferrimagnetic material	23
11g. (1.10).	The 1/2 vs. I curves of ferrinaghetic material	43

Fig. (1.17).	Molecular absolute saturation moment of	
	various ions	24
Fig. (1.18).	Variation of molar saturation moment of	
	various spinel ferrites with addition of Zn-	
	ferrite [G. Guillaud1950]	26
Fig. (1.19).	Hysteresis loop	27
Fig. (1.20).	Néel relaxation and Brown relaxation	29
Fig. (1.21).	Relaxation time vs particle size for magnetite	
	(Fe ₃ O ₄) particles	31
Fig. (1.22).	Relaxation times of magnetic moment	
	orientation dynamics as a function of particle	
	diameter and viscosity	31
Fig. (1.23).	The effect of heating at 42°C on the thermos-	
	sensitivity of V 79 cells. Heating was	
	completed 10 min before acute X-irradiation	34
Fig. (1.24).	Neutron capture process follows by gamma	
	rays emission	39
Fig (3.1).	Flow chart of the synthesis of Mg _{1-x} Zn _x Fe ₂ O ₄	
	nanoparticles	61
Fig. (3.2).	X-ray fluorescence in schematic representation	63
Fig. (3.3).	An outline of a double beam spectrophotometer	
	system	66
Fig. (3.3).	Beam optical path during TEM operation.	67
Fig. (3.4).	Schematic representation of vibrating sample	
	magnetometer	68
Fig. (3.5).	Schematic diagram of SAR measuring System	70
Fig. (4.1).	The XRF spectra for Mg _{1-x} Zn _x Fe ₂ O ₄ samples	79
Fig. (4.2).	Relation of the molecular ratios	
	x-stoichiometric and the measured by XRF in	0.0
Ti (10)	each sample	80
Fig. (4.3).	XRD spectra for the Mg _{1-x} Zn _x Fe ₂ O ₄	81
Fig. (4.4).	Variation of the lattice parameter a with Zn	0.0
F' (4.5)	content (x)	82
Fig. (4.5).	The IR spectra for the Mg _{1-x} Zn _x Fe ₂ O ₄ ferrites	85
Fig. (4.6).	IR-peaks separation spectra for the	00
E: ~ (4.7)	Mg _{1-x} Zn _x Fe ₂ O ₄ nanomagnetic ferrites	90
Fig. (4.7).	TEM images and particles distribution for the	02
Fig. (4.9)	$Mg_{1-x}Zn_xFe_2O_4$	92
Fig. (4.8).	M-H curves of $Mg_{1-x}Zn_xFe_2O_4$ samples	95
Fig. (4.9).	Variation of the experimentally magnetic	0.4
	moment "n _{exp} " with Zn ²⁺ content	96

Fig. (4.10).	Dead layer and magnetic core of the	
118. (1110).	magnetic nanoparticle	98
Fig. (4.11).	Fig. (4.11).(a) and (b) Langiven magnetization	
11g. (4.11).	fitting curves of the Mg _{1-x} Zn _x Fe ₂ O ₄ samples	101
Fig. (4.12).	Temperature profile with time for alternating	101
11g. (4.12).	magnetic fields for Mg _{1-x} Zn _x Fe ₂ O ₄	
	nanomagnetic ferrites	102
Fig. (4.13).	The relation between SAR behavior dead layer	102
116. (1.13).	thickness (t') vs. Zn content (x) for	
	$Mg_{1-x}Zn_xFe_2O_4$ nanomagnetic ferrites	103
Fig. (4.14).	The relation between SAR behavior, the particle	100
118. (1111).	size (D) vs. Zn content (x) for Mg _{1-x} Zn _x Fe ₂ O ₄	
	nanomagnetic ferrites	104
Fig. (4.15).	XRD spectra of the Mg _{0.8} Zn _{0.2} Fe ₂ O ₄ , as	101
8: ():	prepared sample (a.p.), samples annealed at	
	400, 600 and 800 °C	106
Fig. (4.16).	The variation of lattice parameters (a) with the	
	annealing temperatures for Mg _{0.8} Zn _{0.2} Fe ₂ O ₄	
	ferrites	107
Fig.(4.17).	TEM images and particles distribution for the	
	annealed samples at 400, 600 and 800 °C	109
Fig. (4.18).	Heat treatments for two grains [N. Rezlescu	
	et al., 1998]	110
Fig. (4.19).	M-H curves for the Mg _{0.8} Zn _{0.2} Fe ₂ O ₄ , as	
	prepared sample (a.p.), annealed at 400, 600	
	and 800 °C	111
Fig. (4.20)	Temperature profile with time for	
	Mg _{0.8} Zn _{0.2} Fe ₂ O ₄ nanomagnetic ferrites before	
	and after annealing	114
Fig. (4.21).	The relation between SAR, magnetization (M)	
	vs. the particle size (D) and annealing	
	temperature for Mg _{0.8} Zn _{0.2} Fe ₂ O ₄ ferrites	114
Fig. (4.22).	XRD spectra for the Mg _{0.8} Zn _{0.2} Fe _{2-y} Gd _y O ₄	116
Fig. (4.23).	Variation of the lattice parameter with Gd ³⁺	_
	content (y)	117
Fig.(4.24).	TEM images and particles distribution	
	histograms of the Mg _{0.8} Zn _{0.2} Fe _{2-y} Gd _y O ₄ ferrites	
	(where $y = 0.025, 0.05, 0.075, and 0.10)$	119
Fig. (4.25).	M-H curves for the Mg _{0.8} Zn _{0.2} Fe _{2-y} Gd _y O ₄	120
Fig. (4.26).	Temperature profile with time for	
	Mg _{0.8} Zn _{0.2} Fe _{2-y} Gd _y O ₄ nanomagnetic ferrites	122

Fig. (4.27).	The relations between the SAR, magnetization	
8: (::=:/:	and particle size (D) vs. Gd ³⁺ concentrations for	
	Mg _{0.8} Zn _{0.2} Fe _{2-v} Gd _v O ₄ nanomagnetic ferrites	123
Fig. (4.28).	γ-ray spectra, recorded with different	
	concentrations after neutron activation for both	
	⁵⁹ Fe and ⁶⁵ Zn isotopes	125
Fig. (4.29).	γ-ray spectra, recorded at different Mg	
	concentrations after neutron activation for	
	²⁷ Mg isotope	126
Fig. (4.30).	Relation between the molecular ratios as	
	prepared x(Calc.) and measured by x(NAA)	
	ratios for each sample	127
Fig. (4.31).	XRD fitting spectra for the Mg _{1-x} Zn _x Fe ₂ O ₄	
	before and after neutron irradiations	130
Fig. (4.32).	XRD spectra, for the Mg _{0.8} Zn _{0.2} Gd _y Fe _{2-y} O ₄ ,	
	before and after neutron irradiations	132
Fig. (4.33).	Variation of lattice parameters with Zn	
	concentration before and after irradiation for	
	$Mg_{1-x}Zn_xFe_2O_4$	134
Fig. (4.34).	Variation of the lattice parameters with Gd	
	concentration before and after irradiation for	
	$Mg_{0.8}Zn_{0.2}Gd_yFe_{2-y}O_4$	135
Fig. (4.35).	M-H curves for Mg _{1-x} Zn _x Fe ₂ O ₄ nanoparticles	10-
F: (1.2.5)	where x=0.0, 0.2, 0.4 and 0.6	137
Fig. (4.36).	M-H curves for Mg _{0.8} Zn _{0.2} Gd _y Fe _{2-y} O ₄	
	nanoparticles where $y=0.025, 0.05, 0.075$ and	120
Fig. (4.27)	0.100	138
Fig. (4.37).	Temperature profile with time for $Mg_{1-x}Zn_xFe_2O_4$ samples, after short-time	
	$mg_{1-x}Zn_xFe_2O_4$ samples, after short-time neutron irradiation	140
Fig. (4.38).	SAR values for Mg _{1-x} Zn _x Fe ₂ O ₄ nanoparticles	140
1 1g. (1 .50).	vs. Zn content before and after neutron	
	irradiation	140
Fig. (4.39).	Temperature profile with time for	- 10
-6-().	$Mg_{0.8}Zn_{0.2}Gd_yFe_{2-y}O_4$ samples, after short-time	
	neutron irradiation	141
Fig. (4.40).	SAR values for Mg _{0.8} Zn _{0.2} Gd _y Fe _{2-y} O ₄	
	nanoparticles vs. Gd content before and after	
	neutron irradiation	141

List of Tables

Table No.	Title	Page
Table (1.1).	Classification of neutrons according to its	
	energy [N. J. Carron 2007]	37
Table (4.1).	The Elemental concentration ratios of each	
	element and x-values calculated using XRF	
	technique of the Mg _{1-x} Zn _x Fe ₂ O ₄ samples	76
Table (4.2).	Crystallite size (δ) of the $Mg_{1-x}Zn_xFe_2O_4$	
	ferrites	83
Table (4.3).	IR absorption bands (v_0 and v_t) for	
	Mg _{1-x} Zn _x Fe ₂ O ₄ ferrites	85
Table (4.4).	Average particle size of Mg _{1-x} Zn _x Fe ₂ O ₄	
	nanomagnetic ferrites	90
Table (4.5).	Saturation magnetization values of bulk	
	$(M_{s(bulk)})$, nano $(M_{s(nano)})$ and the dead layer	
	thickness (t') for Mg _{1-x} Zn _x Fe ₂ O ₄ nanomagnetic	
	ferrites	99
Table (4.6).	Crystallite size (δ) of the Mg _{0.8} Zn _{0.2} Fe ₂ O ₄	
	nanomagnetic ferrites	106
Table (4.7).	Average particle size (D) of the Mg _{0.8} Zn _{0.2} Fe ₂ O ₄	
	nanomagnetic ferrites with annealing	110
Table (4.8).	Saturation magnetization (M _s) of the	
	$Mg_{0.8}Zn_{0.2}Fe_2O_4$ annealed in air at 400, 600 and	
	800 °C for 4 h	112
Table (4.9).	Effective magnetic diameter (D _{eff}) and Dead	
	layer thickness (t'), for the as prepared and	
	annealed Mg _{0.8} Zn _{0.2} Fe ₂ O ₄ nanomagnetic ferrites	112
Table (4.10).	Crystallite size (δ) of the Mg _{0.8} Zn _{0.2} Fe _{2-y} Gd _y O ₄	
	nanomagnetic ferrites	117
Table (4.11).	Average particle size of Mg _{0.8} Zn _{0.2} Fe _{2-y} Gd _y O ₄	
	nanomagnetic ferrites	120
Table (4.12).	Calculated elemental ratios and x-values	
	calculated using NAA technique for each	
	element	127
Table (4.13).	Crystallite size (δ) of the Mg _{1-x} Zn _x Fe ₂ O ₄ and	
	Mg _{0.8} Zn _{0.2} Fe _{2-y} Gd _y O ₄ nanomagnetic ferrites	
	before and after neutron irradiation with dose	
	$6x10^3 \text{ n/cm}^2$	133
Table (4.14).	Comparison between the results of the SAR in	
	our work and published research on the same	

List of Tables

	structured	142
Table (4.14).	Nuclear data for the ¹⁵⁸ Gd, ¹⁶⁰ Gd, ⁵⁸ Fe, ⁶⁴ Zn, ⁶⁸ Zn and ²⁶ Mg isotopes	145