

Evaluation of the clinical efficacy of Fractional CO₂ laser combined with topical antifungal in the treatment of onychomycosis using SCIO (Score clinical index of onychomycosis)

Thesis
Submitted for Partial Fulfillment of Master Degree
Dermatology, Venerology and Andrology

Norhan Khaled Mohammed Ali Al-Meligi

M.B.B.CH Faculty of Medicine - Ain Shams University

Under the supervision of

Dr. Maha Adel Shaheen

Professor of Dermatology, Venerology and Andrology Faculty of Medicine – Ain Shams University

Dr. Mohammed Taha Mahmoud

Professor of Microbiology and Immunology Faculty of Veterinary Medicine – Zagazig University

Dr. Rania Mahmoud Al Husseiny

Lecturer of Dermatology, Venerology and Andrology Faculty of Medicine – Ain Shams University

> Faculty of Medicine Ain Shams University 2018

First and foremost, I feel always indebted to ALLAH, the Most Kind and Most Merciful.

I'd like to express my respectful thanks and profound gratitude to **Prof. Dr. Maha Adel Shaheen,** Professor of Dermatology, Venereology and Andrology, Faculty of Medicine - Ain Shams University, for her keen guidance, kind supervision, valuable advice and continuous encouragement, which made possible the completion of this work.

I am deeply grateful to **Prof. Dr. Mohammed Taha Mahmoud**, Professor of Microbiology and immunology Faculty of Veterinary medicine – Zagazig University. His expertise in the field of Microbiology has set the standards on the subject of the presented.

I am also delighted to express my deepest gratitude and thanks t **Dr. Rania Mahmoud Al Husseiny**, Lecturer of Dermatology, Venereology and Andrology, Faculty of Medicine - Ain Shams University, for her kind care, continuous supervision, valuable instructions, constant help and great assistance throughout this work.

Last but not least my sincere thanks and appreciation to all patients participated in this study.

Norhan Khaled Mohammed Ali

List of Contents

Title	Page No.
List of Tables	i
List of Figures	iii
List of Abbreviations	iv
Introduction	1
Aim of the Work	3
Review of Literature	
Onychomycosis	4
• Laser	26
Patients and Methods	41
Results	53
Discussion	73
Conclusion	77
Recommendations	78
Summary	79
References	82
Arabic Summary	

List of Tables

Table No.	Title	Page No.
Table (1):	Lasers in medicine	29
Table (2):	Types of fractional laser	36
Table (3):	Indications of Fractional Laser	Treatment 37
Table (4):	Complications of fractional lase	er treatment40
Table (5):	The clinical pattern component	of the SCIO 48
Table (6):	Growth component of the SCIC) 48
Table (7):	Description of demographic dat	a among study cases 53
Table (8):	Description of clinical disease study cases	
Table (9):	Patient's satisfaction after treatment	nent54
Table (10):	Comparison between SCIO at and six months after treatment a	
Table (11):	Assessment of treatment responsed and mycologiacal culture	· ·
Table (12):	Correlations between each of a patient satisfaction	=
Table (13):	Correlations between each of a at baseline, 3 months and 6 mon	•
Table (14):	Correlations between disease baseline, 3 months and 6 month	

List of Tables (Cont...)

Table No.	Title Page No.	
Table (15):	Correlations between age of patient or disease duration and the change or percent of change in SCIO at 6 months from baseline	67
Table (16):	Correlations between Site of infection and each of change and percent of change in SCIO (at 6 months) from baseline	67
Table (17):	Correlations between Site of infection and patient's satisfaction.	68
Table (18):	Correlations between type of organism and each of change and percent of change in SCIO (at 6 months) from baseline	68
Table (19):	Correlations between type of organism and patient's satisfaction.	69
Table (20):	Correlations between patient satisfaction and each of change and percent of change in SCIO from baseline	69
Table (21):	Correlations between clearance of organism (mycological cure) after treatment and each of change and percent of change in SCIO (at 6 months) from baseline.	71
Table (22):	Correlations between clearance of organism (mycological cure) after treatment patient's satisfaction	71

List of Figures

Fig. No.	Title Page	No.
Fig. (1):	Anatomical structure of the nail	6
Fig. (2):	Distal and Lateral Subungual Onychomycosis	
Fig. (3):	Superficial White Onychomycosis	11
Fig. (4):	Proximal subungual onychomycosis	12
Fig. (5):	Totally Dystrophic Onychomycosis	13
Fig. (6):	Evidence-based guidelines for management of	
	onychomycosis	22
Fig. (7):	Classes and grades of treatment recommendation	23
Fig. (8):	Laser system	26
Fig. (9):	Laser-tissue interaction	28
Fig. (10):	Depth of optical penetration by various lasers	31
Fig. (11):	SCIO online calculator	49
Fig. (12):	BISON Fire-Xel Fractional CO2 laser	50
Fig. (13):	Comparison between SCIO at baseline, three	
	months and six months after treatment among	
	study cases	55
Fig. (14):	Organism clearance after treatment	56
Fig. (15):	A 32 year old female patient with DLSO	57
Fig. (16):	A 39 year old female patient with DLSO	58
Fig. (17):	A 47 year old female patient with DLSO	59
Fig. (18):	A 20 year old female patient with DLSO	60
Fig. (19):	A 52 year old female patient with DLSO	61
Fig. (20):	A 30 year old male patient with DLSO	62
Fig. (21):	A 19 year old female patient with DLSO	63
Fig. (22):	A 18 year old female patient with SWO	64
Fig. (23):		
	of change and percent of change in SCIO from	
	baseline	70

List of Abbreviations

Abb.	Full term
ALT	Alanine aminotransferase
AST	Aspartate aminotransferase
ATP	Adenosine tri phosphate
BCP	Bromocresol Purple
CO2	Carbon dioxide
CW	Continuous wave
d	Depth of involvement
DLSO	Distal-lateral subungual onychomycosis
DNA	Deoxyribonucleic Acid
DTM	Dermatophyte test medium
Er:YAG	Erbium-doped yttrium aluminium garnet
f	Clinical form
h	Degree of hyperkeratosis
HIV	Human immunodeficiency virus
IQR	Interquartile range IQR
КОН	Potassium hydroxide
KTP	Potassium titanyl phosphate
MHC	Major histocompatibility complex
MTZs	Micro thermal zones MTZs
MW	Megawatts

List of Abbreviations (Cont...)

Nd:YAG Neodymium: yttrium-aluminium garnet

NRS Numerical rating scale (NRS)

NS...... Non significant

P value Level of significance

PCR Polymerase chain reaction

PDA Potato dextrose agar (PDA)

PDL Pulsed dye laser

PDT Photodynamic therapy

PSO...... Proximal subungual onychomycosis

r...... Defines the strength and direction of the

linear relationship between two variables

S..... Significant

SCIO...... Score clinical index of onychomycosis

SD..... Standard deviation

SDA +C..... Sabouraud s dextrose agar medium with

chloramphenicol

SWO Superficial White Onychomycosis

TDO...... Totally Dystrophic Onychomycosis

U test..... Mann Whitney Test

Vas Visual analogue score

ABSTRACT

Background: Onychomycosis, a fungal infection of the nail, is considered one of the most prevalent disorders of the nail. Score clinical index of onychomycosis (SCIO) enable comparison of the severity of onychomycosis between nails despite differences in the clinical presentation. Recently fractional CO2 laser and topical antifungal were found to be effective in treating onychomycosis.

Aim of the work: To evaluate the clinical efficacy of fractional carbon dioxide laser combined with topical antifungal in treatment of onychomycosis.

Patient's and Methods: The present study included 20 patients with toenail and fingernail onychomycosis of all age groups. The affected nails received 3 sessions of laser therapy (Fractional CO₂ laser) at 4 weeks intervals and once daily application of topical antifungal (Oxiconazole) available at the market under the name Tinox cream.

Conclusion: We concluded that Fractional carbon-dioxide laser therapy, combined with a topical antifungal agent, is effective in the treatment of onychomycosis. It can treat different types of onychomycosis safely and effectively, and is especially suitable for older patients with low immunity or liver and renal dysfunction who are not appropriate candidates for systemic antifungal agents. Thus, it could be considered as an alternative treatment modality.

Recommendations: Further studies are needed involving a larger number of cases, of both sexes with different age groups and disease durations to minimize statistical errors and to detect if there is a difference in obtained results according to these data. We recommend increasing number of laser sessions, a longer follow-up time to detect relapsing rate and if possible always support the results with a parallel mycological and microscopic examination. Studies demonstrating treatment efficacy and comparing this efficacy with oral antifungal agents are needed. We believe that this area of study will continue to expand and provide new insights of treatment options for onychomycosis.

Keywords:

CO2: Carbon dioxide; DLSO: Distal-lateral subungual

onychomycosis; SCIO: Score clinical index of onychomycosis

Introduction

Onychomycosis, a fungal infection of the nail, is considered one of the most prevalent disorders of the nail. It occurs after primary infection of the nail bed, which may lead to subungual hyperkeratosis (Bhatta et al., 2015). Primary caused by dermatophytes such as Trichophyton rubrum and Trichophyton mentagrophytes (Gupta and Nakrieko, 2014). Other causative organisms are non dermatophyte molds (Sreepurna et al., 2017). Candida albicans accounts for approximately 70% of onychomycosis caused by yeasts. Direct microscopic examination after (KOH) preparation and fungal culture are commonly used to confirm the diagnosis (Bhatta et al., 2015).

The classical treatment modalities for onychomycosis include oral as well as topical antifungal, however, the cure rate is considered to be low and regression rate is found to be high (Gupta and Simpson, 2013). Topical antifungals are often ineffective because of their inability to penetrate via nail plate. Systemic treatments, although effective, have limited application because of adverse effects such as hepatotoxicity, potential drug interactions (Scher et al., *2013*).

Score clinical index of onychomycosis (SCIO) enable comparison of the severity of onychomycosis between nails despite differences in the clinical presentation, The SCIO may prove to be an accurate indicator of therapeutic effectiveness (Gupta et al., 2002). It has:

- 1. Clinical pattern component based on (1) clinical form, (2) depth of nail involvement and, (3) thickness of subungual hyperkeratosis.
- 2. Growth pattern component based on location of the onychomycosis, digit number and age of the patient.

Photodynamic therapy is considered to be a non traditional method for treatment of onychomycosis (Grover and Khurana, 2012). Photodynamic therapy offers a number of advantages over traditional antimicrobial therapies as it has a broad spectrum action and is effective independent of patterns of antimicrobial resistance (Robres et al., 2015). Laser-based treatments have been explored as a possible alternative treatment for onychomycosis. Long pulse 1064nm neodymium: yttrium-aluminiumgarnet (Nd:YAG) laser, diode laser and Q-switched Nd:YAG laser have all been studied and found to be safe and effective for treating onychomycosis (Robres et al., 2015).

The fractional CO2 laser systems were developed to maximize the effect of ablative laser therapies and minimize side effects (Tierney et al., 2011). Recently fractional CO2 laser and topical antifungal were found to be effective in treating toenail onychomycosis (Bhatta et al., 2015).

Aim of the Work

To evaluate the clinical efficacy and safety of fractional carbon dioxide laser combined with topical antifungal in treatment of toenail and fingernail onychomycosis.

Chapter 1

Onychomycosis

Knowledge of the terminology and anatomy is important for understanding nail diseases and for scientific work within this field. The nail plate can be considered a translucent window to the underlying structures, mainly the nail bed. This can change in disease states where the nail often becomes thick and non-translucent. The nail bed is highly vascular giving the nail a pink color. The color of the nail changes in many disease states and can give important clues to the diagnosis of nail diseases (*Ólafsson et al.*, 2016).

Nail anatomy:

The nail is attached to the nail bed, which holds it in place with the nail folds and matrix. The nail plate consists of tightly packed cells that have lost their nuclei. The nail plate is continuously formed by the matrix and continues to grow throughout life. The nail matrix is often divided into two parts. The ventral matrix is also called the nail bed and starts at the distal end of the lunula. It is limited distally by the hyponychium. The dorsal matrix lies under or is a part of the ventral part of the proximal nail fold. The lunula (from Latin: half-moon) is the more lightly colored part of the proximal nail plate which often looks like a half-moon. It is best seen on the thumbs and great toenails. The lunula determines the shape of the nail (*Phillips and Gest, 2013*).

The lateral nail folds are the folded part of the skin that helps to hold the nail in place. The proximal or posterior nail fold has a similar function and is continuous with the cuticle, but on the ventral surface, it becomes the dorsal part of the matrix. The cuticle (eponychium) is a thin translucent layer of the epidermis extending from the proximal nail fold and adheres to the nail plate (*Ólafsson et al.*, 2016).

The hyponychium is the area beneath the free edge of the nail. The distal area of the nail bed has a different color. This 1–2 mm band is called the onychodermal band and is light in color in fair-skinned individuals, but darker in people with darker skin. This band is the first defense against microorganisms, and if it is disrupted, fungal invasion is easier. The distal groove is a landmark that delineates the subungual structures from the pulp (*Phillips and Gest*, 2013) (Figure 1) illustrates anatomical structure of the nail.

Onychomycosis:

Onychomycosis is a chronic fungal infection of the nail and may involve the nail bed, the nail plate, and the matrix. It is difficult to be treated. Relapses and reinfections are common. The diagnosis can be made only when both positive laboratory and clinical criteria are present (*Scher et al.*, 2007). Onychomycosis can be caused by dermatophytes or non dermatophyte moulds. Onychomycosis can also be caused by more than 1 organism, for example, a non dermatophyte mould in addition to a dermatophyte (*Gupta*)

and Nakrieko, 2014). Clinical signs of onychomycosis include nail discoloration, hyperkeratosis, and onycholysis (Elewski et al., 2013). Onychomycosis frequently presents as distal-lateral subungual onychomycosis (DLSO), with fungi entering the nail through the distal and/or lateral sides of the nail plate (Elewski et al., 2013).

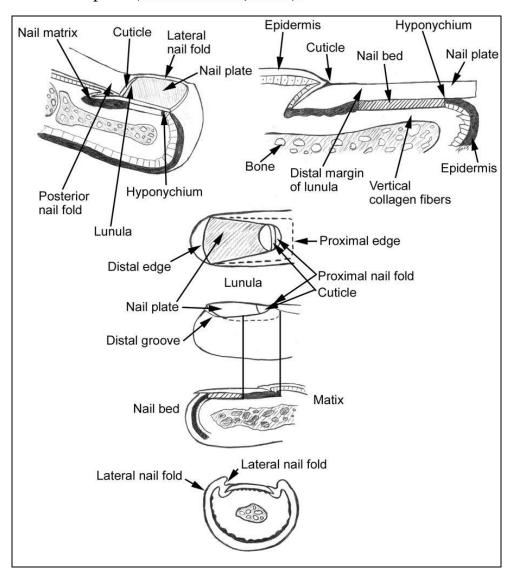


Figure (1): Anatomical structure of the nail (*Phillips and Gest*, 2013).