

Surgical correction of flexible planovalgus feet in children and adolescents with neuromuscular disorders

Thesis submitted for partial fulfillment of Doctoral Degree in Orthopaedic Surgery

By

Ahmed AbdelSalam Ahmed Omran

MBBCh, MSc orthopaedic surgery

Under supervision of

Prof. Hany Hefny

Professor of Orthopaedic Surgery Faculty of Medicine - Ain Shams University

Prof. Tamer Elsobky

Professor of Orthopaedic Surgery Faculty of Medicine - Ain Shams University

Prof. Osama Elshazly

Professor of Orthopaedic Surgery Faculty of Medicine - Ain Shams University

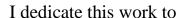
Prof. Mohamed Mokhtar

Assistant Professor of Orthopaedic Surgery Faculty of Medicine - Ain Shams University

> Faculty of Medicine Ain Shams University 2018

بِينِ مِٱللَّهِ ٱلرَّحْمَزِ ٱلرَّحِيمِ

وَمَا تَوْفِيقِي إِلَّا بِاللَّهِ ۚ عَلَيْهِ تَوَكَّلْتُ وَإِلَيْهِ أُنِيبُ


صدق الله العظيم

Acknowledgement

- I would like to express my gratitude to *Prof Hany Hefny*, for his great support that helped me finalize the thesis and bring it to light.
- I would like to express my appreciation to *Prof. Tamer El-Sobky*, for his insights and insistence that the work be as close as possible to perfection.
- I would like to express my appreciation to *Prof. Osama ElShazly*, for his continuous support, ideas, and invaluable assistance during manuscript preparations.
- I would like to express my gratitude to *Prof Mohamed Mokhtar*, for the long journey he took with me, for his close scrutiny, ideas and discussions throughout the process of planning and executing this study.
- I am indebted to *Prof Mostafa El-Sherbini* for teaching me everything I know about cerebral palsy.
- I would like to express my appreciation to my professors and colleagues at the *orthopaedic department of Ain Shams University*, I owe them my knowledge and skills.
- I would like to express my appreciation to the *orthopaedic* department at the National institute of neuromotor system for their unlimited support.

Dedication

My parents and brothers for their continuous encouragement and persistence that I complete this work

My wife and my 3 little children for all what they endured during these years

Table of contents

•	Detailed table of contents		
•	Abstract		
•	Keywords		
•	List of abbreviations		
•	List of figures		
•	List of tables		
1.	Introduction 1		
2.	Review of literature		
	Pathoanatomy and Biomechanics	3	
	Assessment methods	13	
	• Treatment overview	33	
3.	Patients and methods	49	
4.	Results		
5.	Case presentation		
6.	Discussion		
7.	Conclusion		
8.	Summary	116	
9.	References	119	
10.	0. Arabic summary		

Detailed table of contents

Abstract	V
keywords	VI
List of abbreviations	VII
List of figures	IX
List of tables	XIIII
Introduction	1
Pathoanatomy and Biomechanics	3
Assessment methods	13
Clinical:	13
Radiological:	16
Pedobarography:	22
Gait analysis	28
Patterns of planovalgus foot:	29
Functional assessment:	30
Postoperative assessment considerations:	32
Treatment overview	33
[A] Soft tissue procedures	36
[B] Osteotomies:	37
Medial displacement calcaneal osteotomy:	37
2. Lateral calcaneal lengthening:	38
3. Medial column procedures:	41
4. The triple C osteotomies:	42
[C] Extra-articular subtalar arthrodesis:	45
[D] Arthroereisis:	45
[E] Arthrodesis:	46
Patients and Methods	49

[A] Clinical assessment: 50
[B] Radiological variables53
[C] Pedobarographic assessment: 59
[D] Functional assessment: 60
[E] Operative procedure:
Results69
[A] Patient population: 69
[B] Procedures: 69
[C] Radiological and clinical:
[D] Functional outcome:
Statistical methods:
[E] Complications:
[F] Pedobarography:
[G] Triple-C with medial procedures:
Case presentation
Discussion99
Conclusion
Summary
References
Appendix
137 الملخص العربي

Abstract

Introduction:

Planovalgus is the most common foot deformity in cerebral palsy patients, in particular in patients with diplegia and quadriplegia. Surgery is recommended if the foot is painful or there is progressive mechanical collapse compromising walking ability. Numerous surgical procedures were described and no one proved superior. This study was conducted to evaluate the effect of Triple C operation in patients with neuromuscular disorders.

Material and methods:

Our population was 30 feet (18 patients) with cerebral palsy, diplegia and quadriplegia. The inclusion criteria were ambulatory children and adolescents (skeletally immature) older than 4 years with flexible deformity. We identified patient age, sex, functional status, associated soft tissue foot and ankle procedures, and type of graft used. Assessment was done using clinical, radiological and functional outcomes. The *Primary outcome* was radiological angles measured from different plain x-ray views (Antero-Posterior, lateral and hindfoot views).

Results:

Radiological results were described as mean, range and standard deviation (SD). The mean preoperative *calcaneal pitch angle* was -2.3° (range -64° to 19°, SD=17.98°) compared to a mean of 10.1° (range -7° to 33°, SD=9.89°) at final follow-up. The mean preoperative *lat talocalcaneal angle* was 49.4° (range 25° to 68°, SD=11.4°) compared to a mean of 43.17° (range 22° to 67°, SD=11.96°) at final follow-up. The mean preoperative *lat talo-first metatarsal angle* was 40.17° (range 18° to 74°, SD=14.9°) compared to a mean of 18.63° (range 0° to 40°, SD=11.15°) at final follow-up. The mean preoperative *AP talonavicular coverage angle* was 46.43°

(range 19⁰-78⁰, SD=13.5⁰) compared to a mean of 33.17⁰ (range 0⁰ to 62⁰, SD=17.12⁰) at final follow-up. The mean preoperative *AP talo-first metatarsal angle* was 38.83 (range 17 to 55, SD=8.99) compared to a mean of 20.8 (range -18 to 47, SD=13.20) at final follow-up. The postoperative change was significant for all angles.

Abduction deformity (AP-TN and AP-T1st) showed greater correction in both the groups with strut graft (13 feet) and strut graft with peroneus brevis lengthening (9 feet) as compared to the group with standard graft (8 feet).

Discussion:

The triple C osteotomies in our study as in others proved to be a reliable option in correction of flexible planovalgus feet in cerebral palsy patients with very few complications. Feet with deformity more than mean+3SD showed the highest degree of undercorrection. Associated soft tissue problems should be addressed during the index surgery.

Keywords

Cerebral palsy, triple-C, foot osteotomy, planus, flatfoot, Valgus, paediatric, children

List of abbreviations

4.50	A 11 C
AFO	Ankle-foot-orthosis
AOFAS	American orthopaedic foot and ankle society
AP	Antero-posterior
ATL	Achilles tendon lengthening
СОР	Center of pressure
СР	Cerebral palsy
CPPI	Coronal plane pressure index
FMS	Functional mobility scale
GC	Gastrocnemius
GMFCS	Gross motor functional classification system
GRF	Ground reaction force
GRFc	Ground reaction force on calcaneus
GRFff	Ground reaction force on forefoot
GRFO	Ground reaction foot orthosis
Lat	Lateral
LCL	Lateral calcaneal lengthening
LFF	Lateral forefoot
LMF	Lateral midfoot
LMNL	Lower motor neuron lesions
MDCO	Medial displacement calcaneal osteotomy
MFF	Medial forefoot
MMF	Medial midfoot
PF/KE	Plantar flexion / knee extension
PXR	Plain X-rays
	I .

ROM	Range of motion
SEMLS	Single event multilevel surgery
SMDO	Supramalleolar derotation osteotomy
STJ	Subtalar joint
UMNL	Upper motor neuron lesions

List of figures

No.	Legend	p
Fig 1	Gait cycle of the right leg.	3
Fig 2	Ankle/foot rockers during stance phase.	4
Fig 3	The subtalar joint axis and its relation to the foot	6
Fig 4	Plantar flexion – knee extension couple.	9
Fig 5	The effect of foot rotation on lever arm and Plantar flexion/Knee extension couple.	9
Fig 6	Subtalar joint (STJ) moments in response to ground reaction force (GRF).	10
Fig 7	Too many toes sign.	15
Fig 8	Podoscopic view of bilateral planovalgus feet.	15
Fig 9	Lateral naviculo-cuboid overlap.	22
Fig 10	Lateral metatarsal stacking.	22
Fig 11	Pedobarography of a cerebral palsy patient with right foot in planovalgus	24
Fig 12	Foot segmentation in pedobarography.	26
Fig 13	Pedobarograhic parameters.	27
Fig 14	Sagittal plane kinematics of the ankle and foot in a CP patient with asymmetrical gait	28
Fig 15	The effect of surgery on subtalar joint axis position.	34
Fig 16	Lateral calcaneal lengthening.	40