سامية محمد مصطفى

شبكة المعلومات الحامعية

بسم الله الرحمن الرحيم

-Caro-

سامية محمد مصطفي

شبكة العلومات الحامعية

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

سامية محمد مصطفى

شبكة المعلومات الجامعية

جامعة عين شمس

التوثيق الإلكتروني والميكروفيلم

قسو

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة يعيدا عن الغيار

سامية محمد مصطفي

شبكة المعلومات الجامعية

المسلمة عين شعور المسلمة عين شعور المسلمة عين شعور المسلمة عين شعور المسلمة ا

سامية محمد مصطفى

شبكة المعلومات الحامعية

بالرسالة صفحات لم ترد بالأصل

A COMPARISON BETWEEN CONSTRUCTION SYSTEMS FOR RESIDENTIAL BUILDINGS

 $\mathbf{B}_{\mathbf{V}}$

Eng. Sameh Yakoup Sabry Rizk Allah

A Thesis Submitted to the Faculty of Engineering at Cairo University In partial fulfillment of the Requirements for the Degree of Master of Science

. In

Structural Engineering

Under the Supervision of

Dr. MOHEEBÆL- SAID

Prof., of Construction Eng. And Management, Faculty of Engineering. Cairo University

Dr. MOHAMED EL- ZANAT

Prof. Concrete Structural Engineering Dept. Faculty of Engineering. Cairo University

Dr. MAHMOUD ABD EL-SALAM

Dr. structural Engineering Dept Faculty of Engineering,

Cairo University

FACULTY OF ENGINEERING, CAIRO UNIVERSITY

GIZA, EGYPT

February 1999

ورم

7, Xio3/6/15

.

. •

A COMPARISON BETWEEN CONSTRUCTION SYSTEMS FOR RESIDENTIAL BUILDINGS

By

Eng. Sameh Yakoup Sabry Rizk Allah

A Thesis Submitted to the

Faculty of Engineering at Cairo University

. In partial fulfillment of the

Requirements for the Degree of

Master of Science

In

Structural Engineering

Approved by the

Examining Committee:

Prof. Dr. MOHEEB EL- SAID, Thesis Main Advisor

Prof. Dr. ISMAIEL BASHA, Member

Prof. Dr. M. TALAAT MOSTAFA, Member

Prof. Dr. MOHAMED EL-ZANATY, Member

FACULTY OF ENGINEERING, CAIRO UNIVERSITY

GIZA, EGYPT

February 1999

. . ł . pagan s

•

.

·

· .

.

•

CONTENTS

			Page
LIST	OF TA	ABLES	vii
LIST	OF FI	GURES	ix
ACK	NOWL	LEDGMENTS	xi
ABS'	TRAC	Γ	xii
1	СНА	APTER 1 INTRODUCTION	1.
	1.1	Introduction	1
	1.2	Objectives	2
	1.3	Scope of study	2
	1.4	General assumptions	2
	1.5	Thesis Outlines	3
2	СНА	PTER 2 LITERATURE REVIEW AND THE STUDY	,
	ASS	UMPTIONS	4
	2.1	Introduction	4
	2.2	Literature Review	4
	2.3	Method of study	9
		2.3.1 Methods of Construction	, 11
		2.3.1.1Conventional Method Using Traditional For	mwork 11
		2.3.1.2Conventional Method Using Early Striking F	ormwork
			11
		2.3.1.3Lift Slab Method	11
		2.3.1.4Bearing Walls Method	12
		2.3.2 Comparison Criteria	12
		2.3.2.1Duration of Construction	12
		2.3.2.2Direct Costs	12
		2.3.2.3The Labor Requirements	12
		2.3.2.4Other Considerations	13

3	СНАР	TER 3 DESCRIPTION OF CONSTRUCTION METHODS USE	D
	~		14
	3.1	Introduction	14
	3.2	Conventional Method Using Traditional Wooden Formwork	14
		3.2.1 The Advantages of Conventional Method	16
	•	3.2.2 Disadvantages of Conventional Method	16
		3.2.3 Construction Sequence of Conventional	16
		3.2.4 Principles of Structural Design Used For Conventi	onal
		Method	17
	3.3	Conventional Method Using Early Striking Formwork	18
		3.3.1 The Advantages of Early Striking Formwork	20
		3.3.2 The Disadvantages of Early Striking Formwork	20
		3.3.3 Construction Sequence of Early Striking Formwork	20
	٠	3.3.4 Principles of Structural Design Used For Early Stri	king
		Formwork ·	21
	3.4	Lift Slab Method	22
		3.4.1 The Advantages of Lift Slab Method	. 22
		3.4.2 The Disadvantages of Lift Slab Method	22
		3.4.3 Construction Sequence of Lift Slab Method	23
		3.4.4 Special Requirements	25
		3.4.5 Slab To Column Connection	25
		3.4.6 Equipments	27
		3.4.7 Principles of Structural Design Used For Lift Slab Metho	d 28
	3.5	Bearing Walls Method	29
		3.5.1 The Advantages of Bearing Walls Method	29
		3.5.2 The Disadvantages of Bearing Walls Method	29
		3.5.3 Construction Sequence of Bearing Walls Method	30
		3.5.4 Principals of Structural Design Used For Bearing	Walls
		Method	31
	3.6	Summary	32
		ADTED A ANALYSIS OF THE RESULTS	33

,	4.1	Introduction	33
	4.2	The Construction Durations For Each Alternatives	33
	4.3	Effect of Construction Methods on Duration	34
	4.4	The Effect of Construction Methods on Direct Cost	42
	4.5	The Effect of Construction Methods on Labor Requirements	51
	4.6	Other Considerations	65
		4.6.1 The Effect of Construction Methods on Cash Flow	65
		4.6.2 The Effect of Construction Method on Management	
		Convenience	66
		4.6.3 The Effect of Construction Method on Quality Of	The
		Product	66
		4.6.4 The Effect of Construction Method on Flexibility of Use	67
	4.7	The comparison between the four methods	67
	4.8	Summary	74
5	СНАР	PTER 5 SUMMARY AND CONCLUSION	75
	5.1	Summary	75
	5.2	Conclusion	75
	5:3	Recommendations	76
REFE	RENCI	ES .	78
APPE	NDIX .	A: Table of Alternatives' Schedule	79
APPE	NDIX I	B: Tables of Direct Costs of Alternatives	95

LIST OF TABLES

Page

Table 2.1	Types of foundations of each method		9
Table 4.1	Durations of elements' construction of model l.		36
Table 4.2	Durations of elements' construction of model 2.		38
Table 4.3	Durations of elements' construction of model 3.		40
Table 4.4	Direct costs of different alternatives of model 1.		44
Table 4.5	Direct costs of different alternatives of model 2.		46
Table 4.6	Direct costs of different alternatives of model 3.		48
Table 4.7	Direct items' costs of model 1.	Ņ	52
Table 4.8	Direct items' costs of model 2.		54
Table 4.9	Direct items' costs of model 3.		56
Table 4.10	Different cumulative labor - days requirements of model 1.		59
Table 4.11	Different cumulative labor - days requirements of model 2.		61
Table 4.12	Different cumulative labor - days requirements of model 3.		63
Table 4.13	Factors affecting selection the method of construction.		69

LIST OF FIGURES

		Page
Figure 2.1	Typical floor plan of span 3.6 m.	10
Figure 3.1	The formwork of a column in conventional method.	15
Figure 3.2	Conventional slab formwork.	15
Figure 3.3	Early striking panel system.	18
Figure 3.4	Drophead of 2 sides.	19
Figure 3.5	Early striking decking beam.	19
Figure 3.6	Drophead of 4 sides	20
Figure 3.7	Cross section in pocket of column.	23
Figure 3.8	Insert of the column.	24
Figure 3.9	Collar of the slab.	24
Figure 3.10	Program of slabs' lifting for a building five stories.	26
Figure 3.11	Typical cross section of connection between column and slab.	27
Figure 3.12	Pre- cast slab and cast on site slab.	30
Figure 3.13	Cross section of pre- cast plat.	31
Figure 3.14	Cross section on reinforced wall.	. 32
Figure 4.1	Durations of elements' construction of model l.	37
Figure 4.2	Durations of elements' construction of model 2.	39
Figure 4.3	Durations of elements' construction of model 3.	41
Figure 4.4	Direct costs of different alternatives of model 1	45

Figure 4.5	Direct costs of different alternatives of model 2.	47
Figure 4.6	Direct costs of different alternatives of model 3.	49
Figure 4.7	Direct items' costs of model 1.	53
Figure 4.8	Direct items' costs of model 2.	55
Figure 4.9	Direct items' costs of model 3.	57
Figure 4.10	Different cumulative labor - days requirements of model 1.	60
Figure 4.11	Different cumulative labor - days requirements of model 2.	62
Figure 4.12	Different cumulative labor - days requirements of model 3.	64