

Department of Pharmaceutics and Industrial Pharmacy

Formulation and Evaluation of Vesicular Systems for Enhanced Transdermal Drug Delivery

Thesis Submitted **By**

Hanaa Adel Abdel Messih Seif

(Bachelor of pharmaceutical sciences, 2010)

As a Partial Fulfillment for Master Degree in Pharmaceutical Sciences (Pharmaceutics)

Under the supervision Of

Prof. Dr. Ahmed Shawky Geneidi Prof. Dr. Samar Mansour Holayel

Professor of Pharmaceutics and

Industrial Pharmacy

Professor of Pharmaceutics and Industrial Pharmacy

Faculty of Pharmacy
Ain Shams University

Faculty of Pharmacy
Ain Shams University

Dr. Rania Aziz Helmy Ishak

Associate Prof. of Pharmaceutics and Industrial Pharmacy Faculty of Pharmacy Ain Shams University

> FACULTY OF PHARMACY AIN SHAMS UNIVERSITY 2018

Acknowledgement

I would like, first and foremost of anything, to thank God that has driven me to this moment and has not left me in any step in this work and any stage of my life.

I would like to express my sincere appreciation and gratitude to **Professor Dr. Ahmed Shawky Geneidi,** Professor of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, who I am lucky and honored to work under his instructive wise supervision.

I am very grateful to **Professor Dr. Samar Mansour Holayel**, Professor of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University and Head of Pharmaceutical Technology Department, Faculty of Pharmacy and Biotechnology, German University in Cairo . I was so pleased and honored to work under her supervision. I had learned a lot from her in this field and I would like to thank her valuable advice, follow-up and her usual support.

I can not express my deep and profound gratitude to **Associate Professor Dr. Rania Aziz Helmy Ishak**, Associate Professor of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University. I am grateful to her great help, continuous care and support, her focus in every detail and her sincere friendly supervision and guidance.

All thanks again to my supervisors from whom I learned a lot and still learn.

I feel very thankful to all my professors, friends, colleagues and every member in my second home, Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, for help, encouragement and support.

Thanks for everyone who contributed in the accomplishment of this thesis in a direct or indirect way, and special thanks to Genuine Research center (GRC).

I thank all my family members and friends without whom I could not reach this step.

I extend my thanks and my pride to my husband who helped and supported me a lot and to my daughters for their patience all over the period of working and for being a motive.

List of content

Item	Page
List of Abbreviations	i
List of Tables	iv
List of Figures	vi
Abstract	X
General Introduction	1
Scope of work	27
Chapter I: Preparation and Optimization of TRO-Loaded Nano- Ethosomes	28
Introduction	28
Experimental	35
Materials	35
Animals	35
Equipment	36
Methodology	37
I. Constructing the calibration curve of TRO in deionized water using UV-Visible spectrophotometer	37
II. Constructing the calibration curve of TRO in phosphate buffer saline (PBS, pH=7.4) containing 20% ethanol using HPLC	37
III. Preparation of TRO-loaded nano-ethosomes	

IV. Experimental design		
1. Determination of VS, PDI, and ZP		
2. Determination of drug EE%		
V. <i>Ex-vivo</i> drug permeation study through rat skin	40	
1. Determination of the drug permeation kinetics	42	
VI. Characterization of the prepared nano-ethosomes	42	
1. High-resolution transmission electron microscopy (HR-TEM) imaging	42	
2. Drug–excipient interaction study	43	
A. Differential scanning calorimetry (DSC)	43	
B. FT-IR spectroscopy	43	
VII. Physical stability study of the selected nano-ethosomes	43	
VIII. Statistical analysis	43	
1. Point prediction and model validation	44	
2. Optimization data analysis	45	
Results and discussion	46	
I. Calibration curve of TRO in deionized water using UV-Vis spectrophotometer	46	
II. Calibration curve of TRO in PBS (pH 7.4)/ethanol (80:20) using HPLC	48	
III. Preliminary studies	50	
IV. Optimization of TRO-loaded ethosomal vesicles		
1. EE% response		

2. VS response	57
3. PDI response	63
4. Point Prediction and model validation	65
5. Optimization analysis	67
V. ex-vivo drug permeation study	69
1. Mechanism of <i>ex-vivo</i> drug permeation profile	73
VI. Characterization of the prepared nano-ethosomes	76
1. HR-TEM imaging of the prepared TRO-loaded nano-ethosomes	76
2. Drug-excipient interaction study	76
A. DSC study	76
B. FT-IR Spectroscopy	79
VII. Physical stability study	81
Conclusions	84
Chapter II: Preparation and Optimization of TRO-Loaded Flexosomes	86
Introduction	86
Experimental	98
Materials	98
Animals	98
Equipment	99
Methodology	99

99 100 100 100 101
100 100 101
100 101
101
101
101
101
101
101
102
102
102
102
102
103
103
103
103
104
104

Materials	149
Experimental	149
Introduction	143
Chapter III: In Vivo Assessments of the Selected Ethanolic Vesicles	143
Conclusions	141
VI. Physical stability study of the selected formulations	138
B. FT-IR spectroscopy	134
A. DSC	130
2. Drug-excipient interaction study	130
1. Particle morphology using HR-TEM imaging	129
V. Characterization of the selected Flex	129
IV. <i>Ex-vivo</i> assessment of the mechanisms of permeation enhancing effect of the selected ethanolic vesicles	128
1. Kinetics of <i>ex-vivo</i> drug permeation profile	127
III. Ex-vivo permeation study for the selected Flex	122
II. Determination of TRO EE% in the selected Flex	121
4. Preparation of different EA-based ethanolic vesicles using the selected cholesterol concentration.	119
3. Effect of cholesterol content	114
2. Effect of PC to EA molar ratio	108
1. Effect of EA type	105

Animals	149
Equipment	149
Methodology	150
I. Tracking the fluorescently-labelled vesicles in the rat skin layers using CLSM	150
II. Pharmacokinetic studies	151
1. Administration of the selected TRO-loaded formulations to rats	151
2. Blood sampling	152
3. Sample preparation for analysis	152
4. Quantitative determination of TRO in plasma using LC-MS/MS method	154
A. Method conditions	154
B. Method validation	154
C. Construction of TRO calibration curve using LC-MS/MS assay	155
5. Pharmacokinetic analysis	155
III. in vivo skin-vesicle interaction study	156
1. Transdermal administration of the selected TRO-loaded formulations to rats	156
2. Preparation of dermato-histopathology sections	156
IV. Statistical analysis	

Results and discussion	158
I. Tracking the fluorescently-labelled vesicles in the rat skin layers using CLSM	158
II. Pharmacokinetic studies	165
1. Construction of TRO calibration curve using LC-MS/MS assay	165
2. Pharmacokinetic analysis	165
III. in vivo skin-vesicle interaction study	
Conclusions	175
Summary	177
References	187

List of Abbreviations

3 D	Three dimensions	
5-HT ₃ -RAs	5-HT ₃ receptor-antagonists	
ANOVA	Analysis of variance	
ASCO	American Society of Clinical Oncology	
AUC	Area Under the concentration Vs time curve	
BAV	Bioavailability	
CBD	Cannabidiol	
CINV	Chemotherapy-induced nausea and vomiting	
CLSM	Confocal laser scanning microscope	
C _{max}	Maximum plasma drug concentration	
CMC	Critical micelle concentration	
CPP	Critical packing parameter	
CREM	Cremophor RH 40	
CTAB	Cetyl trimethylammonium bromide	
CTZ	Chemoreceptor trigger zone	
CYP2D6	Cytochrome P2D6	
d	Desirability function	
D	Diffusion coefficient	
DHEW	Department of Health, Education & Welfare	
DLS	Dynamic light scattering	
DMSO	Dimethyl sulphoxide	
DOE	Design of experiments	
DSC	Differential scanning calorimetry	
EA	Edge activator	
EAPRU	Experiments and Advanced Pharmaceutical Research Unit	
EE	Entrapment efficiency	
EPC	Egg phosphatidylcholine	
ER	Enhancement ratio	
FA	Fatty acid	
Flex	Flexosomes	
F _{rel}	Relative Bioavailability	

FT-IR	Fourier-transform infrared	
H&E	Haematoxylin and Eosin	
HLB	Hydrophilic-lipophilic balance	
HPLC	High performance liquid chromatography	
HR-TEM	High resolution transmission electron microscope	
ICH	International Conference on Harmonization	
IS	Internal standard	
Jss	Steady state transdermal flux	
Kp	Permeability coefficient	
LC	Liquid chromatography	
LC-MS/MS	Liquid Chromatography/Mass Spectrometry	
LDA	Laser Doppler anemometry	
LOD	Limit of detection	
LOQ	Limit of quantitation	
MASCC	Multinational Association of Supportive Care in Cancer	
MLX	Meloxicam	
MS	Mass spectrometry	
Mw	Molecular weight	
MWCO	Molecular weight cut off	
n	Diffusional release exponent	
NaC	Sodium cholate	
NIH	National Institute of Health	
NLC	Nanostructured lipid carriers	
NPs	Nanoparticles	
OS	Oral solution	
PBS	Phosphate buffer saline	
PC	Phosphatidylcholine	
PC:EA	Phosphatidycholine to edge activator molar ratio	
PDI	Polydispersity index	
PE	Penetration Enhancer	
PK	Pharmacokinetic	
PLGA	Poly(D,L-lactide-co-glycolide)	

PS	Particle size
Q_{24}	Cumulative amount of drug permeated per unit area over 24 h
RSD	Relative standard deviation
SAA	Surface active agent
SC	Stratum corneum
SD	Standard deviation
SDC	Sodium deoxycholate
SEM	Standard error of the mean
SLN	Solid lipid nanoparticles
SPC	Soybean phosphatidylcholine
T80	Tween 80
TDDS	Transdermal drug delivery system
TEWL	Transepidermal water loss
T_{max}	Time to reach maximum drug concentration
TPGS	D-α-Tocopherol polyethylene glycol 1000 succinate
TRO	Tropisetron hydrochloride
TS	Topically applied drug solution
UV/Vis	Ultra-violet/Visible
VS	Vesicle size
ZP	Zeta potential