سامية محمد مصطفى

شبكة المعلومات الحامعية

بسم الله الرحمن الرحيم

-Caro-

سامية محمد مصطفي

شبكة العلومات الحامعية

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

سامية محمد مصطفى

شبكة المعلومات الجامعية

جامعة عين شمس

التوثيق الإلكتروني والميكروفيلم

قسو

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة يعيدا عن الغيار

سامية محمد مصطفي

شبكة المعلومات الجامعية

المسلمة عين شعور المسلمة عين شعور المسلمة عين شعور المسلمة عين شعور المسلمة ا

سامية محمد مصطفى

شبكة المعلومات الحامعية

بالرسالة صفحات لم ترد بالأصل

apolipoprotein e, liptos changes IN CHILDREN WITH MINIMAL CHANGE NEPHROJIC SYNDROME

A Thesis

submitted in partial fulfillment of the requirements for the Master Degree

of "Pediatrics"

Usama Mohamed Mahmoud Younis

M.B., B.ch.

Resident in Pediatric Department Tanta University Hospital

Prof. Sayeda Ebrahim Farag Nagy Abo El-Hana

Prof. of Pediatries Faculty of Medicine Tanta University

Dr.

Ass. Prof. of Pediatrics Faculty of Medicine Tanta University

Samia Salem Sokkar

Lecturer of Pharmacology and Toxicology Faculty of Pharmacy Tanta University

> Faculty of Medicine Tanta University 1999

ACKNOWLEDGEMENT

First and foremost thanks are due to Allah. I would like to express my sincer gratitude and deep appreciation to Prof. *Sayeda Ebrahim Farag,* Prof. of Pediatrics, Faculty of Medicine, Tanta University, for being a senior supervisor, who offered me alot of her time and knowledge and taught me alot; and how to proceed.

I wish to express my gratitude and deepest respect to Dr. Nagy Abo El-Hana, Ass. Prof. of Pediatrics, Faculty of Medicine, Tanta University, for his continuous guidance, constructive criticism and valuable advice, words cann't express my feeling of gratitude of his cooperation which enables this work to become a reality. Gracious thankfulness and sincere indebtedness are extended to Dr. Samia Salem Sokkar, Lecturer of Pharmacology and Toxicology, Faculty of Pharmacy, Tanta University, for her continuous help, constant guidance, cordial supervision and unlimited support were major factors behind completion of this work.

Usama Younis

To

The spirit of my father, my mother and my wife

ABBREVIATIONS

ADT Alternative day therapy

ASO Antistreptolysin O

CMV Cytomegalovirus

DCT Distal convoluted tubule

ESR Erythrocyte sedimentation rate

FFA Free fatty acid

FSGS Focal segmental glomerulosclerosis

GBM Glomerular basement membrane

GFR Glomerular fiteration rate

HMGCOA Hydroxy methyl glutaryl Co A

HDL High density lipoprotein

HLA Human leucocytic antigen

ISKDC International Study of Kidney Disease in

Children

LPL Lipoprotein lipase

LP Lipoprotein

LDL Low density lipoprotein

LCAT Lecithin cholesterol acyl transferase

LAT Lysolecithin acyl transferase

MCNS Minimal change nephrotic syndrome

MPGN Mesangial proliferative glomerulonephritis

MGN Membranous glomerulonephritis

NS Nephrotic syndrome

PCT Proximal convoluted tubule

SIRS Soluble immune response suppressor

VPF Vascular permeability factor

VLDL Very low density lipoprotein

CONTENTS

	Page
1. INTRODUCTION	1
2. REVIEW OFLITERATURE	12
3. AIM OF THE WORK	56
4. SUBJECTS AND METHODS	58
5. RESULTS	78
6. DISCUSSION	134
7. SUMMARY AND CONCLUSION	141
8. RECOMMENDATIONS	146
9. REFERENCES	148
10 ADADIC CUMBAADS	

XXXX $\mathbb{Z}\mathbb{Z}$ **CHAPTER**

 $\nabla \nabla$

汰

NEX SUSCIENT XUE XUE

X ZZZ

X_N

淡淡

 $\bar{\aleph}$ N

 $\mathbb{Z}\mathbb{Z}$

 ∇

 $\mathbb{Z}\mathbb{Z}$

NZ

 $\overline{\mathbb{Z}}$

器

 $\bar{\mathbb{Z}}\bar{\mathbb{Z}}$

空冷

INTRODUCTION

ANATOMICAL CONSIDERATIONS

The human kidneys are bean shaped, about 10 - 20 cm in length, 3.5 - 5 cm in thickness and are situated one on each side of the upper lumbar vertebrae retroperitonially. Each kidney is enclosed within a fibroconnective tissue capsule. On the medial aspect, there is a depression, the hilum, from which the blood vessels enter and leave [1]. The upper part of the ureter distends into the hilum to form the pelvis of the kidney which is subdivided into major and minor calyces. There are usually 2 - 3 major calyces and 8 - 12 minor calyces [2]. Each minor calyx envelops a renal papilla which is perforated by openings of 10 - 25 collecting ducts. Each papilla is seen to be the tip of pyramidal area extending from the hilum towards the capsule forming the medullary pyramid. The peripheral part of each pyramid does not show a clear demarcation from the cortex of the kidney. Each pyramid with its overlaying cortex is to be regarded as a lobe. In the fetus and young child, the kidney surface is irregular and is said to be lobulated. In the cortex, lobules are demarcated by radially oriented interlobular blood vessels, but no demarcation exists in the medulla [1].

EMBRYOLOGICAL CONSIDERATIONS

Development of the urinary system:

In the 3rd week of development, the embryonic mesoderm differentiates into 3 distnict parts:

- 1. Paraxial portion, which forms the somites.
- 2. Lateral mesodermal plate which splits into somatic and splanchnic mesodermal layers.
- 3. Intermediate mesoderm, which is segmented in the cervical region forming nephrotomes, however, in the thoracic and lumbar regions it forms a solid unsegmented mass of tissue, the nephrogenic cord. From this intermediate mesoderm, the excretory units of the urinary system arise [3].

Pronephros:

It appears early in the 4th week by a few solid cell clusters "nephrotomes" in the cervical region which acquire a cavity "nephrostome" then elongate forming pronephric tubules that open into "pronephric duct" that opens caudally into the cloaca [4]. The pronephros soon degenerates but most of its duct is utilized by the next kidney [5], so this kidney is transient.

Mesonephros:

It appears later in the 4th week, caudal to the rudimentary pronephros, where it acts as an intermediate kidney [4]. The nephrogenic cord is divided into clusters of mesenchymal cells which acquire a lumin forming mesonephric vesicles, that is in turn, form S-shaped mesonephric tubules. These tubules grow laterally and become continuous with the pronephric duct, now called mesonephric duct [4]. The medial end expands and becomes invaginated by capillaries to form the glomerular (Bowman's) capsule. The cluster of capillaries that project into this capsule is called a glomerulus [5]. Both the capsule and the glomerulus form a mesonephric (renal) corpuscle. The thoracic mesonephric tubules degenerate leaving those in the lumbar region [6].

Metanephros:

It begins development early in the 5th week and starts to function six weeks later[5]. The metanephros, the permanent kidney, develops from the ureteric bud, which begins as a dorsal outgrowth from the mesonephric duct, and the metanephric mesoderm. Then, the ureteric bud extends dorsilaterally and upwards forming the renal pelvis. The pelvis divides into major and minor calyces and collecting tubules which grow out from the minor

calyces [4]. Each collecting tubule branches and rebranches into successive generations of collecting tubules. Near the blind end of each collecting tubule, clusters of mesenchymal cells in the metanephric mesoderm forming small metanephric vesicle which soon gives rise to renal tubules. Hence a urineferous tubule consists of two embryologically different parts, a nephron derived from the metanephric mesoderm and a collecting tubule derived from the ureteric bud.

Renal histology and functional correlation:

(A) Macroscopic features^[7].

1. The renal cortex and medulla:

* The kidney have an outer red cortex and pyramidal masses of yellowish renal medulla.

2. Renal lobes :

Each medullary pyramid and its connected cup of cortical tissue comprise a renal lobe:

- a) The cortical portion of each lobe contains many nephrons and the pyramids contain numerous collecting tubules.
- b) Each lobe contains many medullary rays, which are cortical tissue comprised of small blood vessels