سامية محمد مصطفى

شبكة المعلومات الحامعية

بسم الله الرحمن الرحيم

-Caro-

سامية محمد مصطفي

شبكة العلومات الحامعية

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

سامية محمد مصطفى

شبكة المعلومات الجامعية

جامعة عين شمس

التوثيق الإلكتروني والميكروفيلم

قسو

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة يعيدا عن الغيار

سامية محمد مصطفي

شبكة المعلومات الجامعية

المسلمة عين شعور المسلمة عين شعور المسلمة عين شعور المسلمة عين شعور المسلمة ا

سامية محمد مصطفى

شبكة المعلومات الحامعية

بالرسالة صفحات لم ترد بالأصل

Effect of Phytoplankton (Chlorella vulgaris and Scenedesmus spp.) Inoculation on Water Quality for Tilapia Culture by Urea and Superphosphate

By

Nabil Ahmad Ibrahim Mohammad

B. Sc. Agric., Animal production, Cairo Univ. 1990,M. Sc., Fish production, Cairo Univ. 1997

Thesis

Submitted in partial fulfillment of the Requirements for the degree of

Doctor of philosophy

In

Agricultural Sciences (Fish production)

Animal production Dep.

Faculty of Agriculture

Cairo University

B

10-1

APPROVAL SHEET

Title: EFFECT OF PHYTOPLANKTON (Chlorella vulgaris and Scenedesmus Spp.) INOCULATION ON WATER QUALITY FOR TILAPIA CULTURE BY UREA AND SUPERPHOSPHATE.

Name: NABIL AHMAD IBRAHIM MOHAMMAD

This thesis for the degree of DOCTOR of philosophy in Agriculture Sci. had been approved by:

Dr. Abd El-Aziz M. Nour

Professor of animal and fish nutrition. Faculty of agriculture Alex. University.

Dr. Mohamed G. Kamar

Professor of poultry production Faculty of agriculture Cairo University.

Dr. Mohammad M. Shafie

Professor of animal physiology Faculty of agriculture Cairo University.

Dr. Mohamed A. Salem

Professor of animal production Faculty of agriculture Cairo University (supervisor).

A.M. Nour

9. Kamar

M. Waf

M.A. Salen

Committee in charge Date: 18/4/2001

Effect of Phytoplankton (Chlorella vulgaris and Scenedesmus spp.) Inoculation on Water Quality for Tilapia Culture by Urea and Superphosphate

By

Nabil Ahmad Ibrahim Mohammad

Doctor of philosophy in Agricultural Sciences (fish production)

Supervising committee

Dr. Mohammad Ali Ibrahim Salem.

Professor of Animal production, Faculty of Agriculture, Cairo University

Dr. Mohammad Mahmoud El-Shafie.

Professor of Animal Physiology, Faculty of Agriculture, Cairo University

Dr. Zienab Attia Nagdy.

Professor of Limnology, Central Lab. for Aquaculture Research (CLAR), Agricultural Research Center (ARC), Ministry of Agriculture.

ABSTRACT

In this study fingerlings of tilapia hybrid (*Oreochromis niloticus* x *Oreochromis aureus*) were cultured in 18 glass aquaria (75 x 40 x 60 cm) and two species of phytoplankton (*Chlorella vulgaris & Scenedesmus spp*) were used.

The investigative experiment included six treatments, each in three replicate aquaria. The first treatment was fertilization by urea at the rate of 435 mg commercial urea / aquarium. The second was the same use of urea plus the addition of phytoplankton at the rate of 5X10⁴ cells/ml. The third treatment was fertilization by mono superphosphate (MSP) at the rate of 830 mg commercial MSP / aquarium. The fourth treatment was the same use of MSP plus the addition of phytoplankton at the rate of 5X10⁴ cells/ml. The fifth treatment was fertilized by urea and MSP mixture at the rates mentioned above for each. The sixth treatment was the control one without any fertilization or phytoplankton application.

Phytoplankton played an important role in removing ammonia and nitrite from the water milieu, thus providing fish by more healthy conditions to grow.

The average of individual fish body weight (ABW) in the urea+phy. treatment at the end of the experiment was $(29.37 \pm 0.60 \text{ g})$ which was significantly (P<0.05) greater than that of control $(25.22 \pm 0.84 \text{ g})$, and the other treatments. The fish in urea treatment had the lowest value of ABW (19.22 $\pm 1.30 \text{ g}$), this is ascribed to the elevated values of un-ionized ammonia (NH₃) and nitrite concentrations in the water in this treatment. On the contrary urea+phy. treatment had the lowest values of un-ionized ammonia and nitrite due to phytoplankton uptake of the nitrogenous compounds (urea in this study) from the water milieu, consequently, transforming it to more appropriate medium for fish growth.

فى هذه التجربة تم استزراع إصبعيات البلطى الهجين (البلطى النياسى X البلطى الأزرق) فى ١٨ حوض زجاجى بأبعاد (٢٠ X ٤٠ X سم) كما تم استخدام نوعين مسن الطحالب الخضراء (الكلوريلا فالجارس والسندسمس).

شملت هذه التجربة ستة معاملات لكل منها ثلاثة تكرارات وكانت المعاملة الأولى هي التسميد بسماد اليوريا بمعدل ٤٣٥ مجم/حوض. المعاملة الثانية هي التسميد باليوريا بنفسس المعدل السابق بالإضافة إلى إضافة الطحالب إليها بتركيز ١٠χ٠ خلية/مسل . المعاملة الثالثة هي التسميد بالسوبر فوسفات الأحادي بمعدل ٨٣٠ مجم/حوض. المعاملة الرابعة هي التسميد بسماد السوبر فوسفات الأحادي بنفس المعدل السابق بالإضافة إلى إضافة الطحسالب اليها بتركيز ١٠χ٠ خلية/مل. المعاملة الخامسة هي التسميد بمخلوط سسمادي اليوريا والسوبر فوسفات بنفس المعدلات المذكورة سابقاً. المعاملة السادسة كانت control بدون إضافة أي سماد أو طحالب.

لعبت الطحالب دوراً هاماً في عملية إزالة الأمونيا والنتريت من البيئة المائية مما وفر ظروفاً أفضل لنمو الأسماك.

كان متوسط الوزن الفردى في نهاية التجربة في معاملة بهاو المعاملات. وكانت جم أعلى معنوياً عنه في السالات (٢٥.٢٠ عنه به الله المعاملات. وكانت جم أعلى معنوياً عنه في السالات (حمالة على المعاملات وكانت معاملة عنه الله وزن للأسماك. وهذا يعزى إلى إرتفاع تركيز كلاً من الأمونيا غير المتأينة (NH3) والنيتريت في هذه المعاملة كنتيجة لإستخدام اليوريا كسماد وحيد. وعلى النقيض من هذا فإن معاملة ولاستخدام النوريات عناد الأمونيا و النيتريت كنتيجة لإمتصاص الطحالب لهده المركبات النيتروجينية من الوسط المائي مما جعله أكثر ملاءمة لنمو الأسماك.

<u>ACKNOWLEDGEMENT</u>

I would like to express my deep gratitude and thanks to Dr. *Mohammad Ali Ibrahim Salem*, Professor of animal production, Faculty of Agriculture, Cairo University, for his kind supervision, reading and revising the manuscript and precious advices.

I also introduce my cordial feeling, deep appreciation and sincere gratitude to *Dr. Mohammad Mahmoud Shafie*, Prof. of Animal Physiology, Faculty of Agriculture, Cairo University, for his supervision guidance, invaluable criticism and advice, continuous encouragement, scientific revision for this work and modification of this thesis

A lot of appreciation and thanks to *Dr. Zeinab Attia Nagdy*, Professor of limnology, Central Lab. of Aquaculture Research in Abbassa, Sharkia, Agriculture research Center, Ministry of Agriculture, for her supervision, participation on suggesting the idea of this study, continuous support and encouragement as well as supplying work facilities.

Also I am grateful to my colleagues in Limnology Department, Central Lab. For Aquaculture Research (CLAR) for their sincere cooperation during this work, specially *Dr. Aida Dawah* and *Dr. Ibrahim Shaker* for their effective help.

My deep thanks to my kin family especially my father and my mother also to my wife, for their heartily concern, faithful assistance and generous help in the achievement of this work.

CONTENTS

Subject	Page
1. Introduction	1
2. Review Of Literature	4
2.1. Fertilization for Fish Culture	4
2.1.1. Chemical Fertilizers	5
2.1.1.1. Phosphorus Fertilization	5
2.1.1. 2. Nitrogen Fertilization	6
2.1.1.3. Advantages of Chemical Fertilizers	7
2.1.1.4. Incorporation of Chemical Fertilizers Nutrients In Fish	8
2.2. Phytoplankton Dynamics	9
2.3. Phytoplankton's Biology	13
2.3.1. Nitrogen (N) Uptake	13
2.3.2 Phosphorus Uptake	16
2.3.3. Factors Regulating Phytoplankton Biology	17
2.3.3.1. Light	17
2.3.3.2. Availability of CO ₂	17
2.3.3.3. Species of Algae	17
2.4. Phytoplankton as Feed Resource	18
2.5. Physico-Chemical Properties of Water	19
2.5.1 Temperature (°C)	19
2.5.2. Dissolved Oxygen (DO)	19
2.5.3. pH	20
2.5.4. Total Alkalinity	20
2.5.5. Total Hardness	21
2.5.6. Total Phosphorus	22
2.5.7. Ammonia	22
2.6.Growth of fish	24

Subject	Page
2.7. Biochemical Composition of the Fish	26
2.7.1. Protein	26
2.7.2. Lipids	26
2.7.3. Ash	27
2.8. Blood Biochemical Aspects	27
2.8.1. Haemoglobin	28
2.8.2. Glucose	28
2.8.3. Total protein	29
2.8.4. Lipids	29
2.8.5. Urea	30
2.8.6. Uric acid and Creatinine	30
2.8.7. Transaminase Enzymes	30
3. Materials and Methods	32
3.1. Aquaria	32
3.2. Experimental Fish	32
3.3. Chemical Fertilizers	35
3.4. Fish Feeding	35
3.5. Phytoplankton (Algae)	35
3.5.1. Isolation, Identification and Purification	35
3.5.2 Mass Cultivation of Algae	39
3.5.2.1. Flask Culture Stage	39
3.5.2.2. Carboy Culture Stage	41
3.5.2.3. Aquaria Culture Stage	41
3.5.2.4. Aeration of Cultures	43
3.5.3. Use of Algae in Phytoplankton Experimental Treatments	43
3.6. Experimental Design	43
3.7. Technical Procedure	44
3.7.1. Water Quality	44

Subject	Page
1) Temperature and Dissolved Oxygen	45
2) pH	45
3) Total Alkalinity	45
4) Total Hardness	45
5) Total Phosphorus	45
6) Total Ammonia & Unionized Ammonia (NH ₃)	46
7) Nitrite (NO ₂)	46
8) Phytoplankton Determination	48
3.7.2. Fish Responses	48
3.7.2.1. Growth Parameters	48
1) Weight Gain	48
2) Relative Growth Rate (RGR)	50
3) Specific Growth Rate (SGR)	50
4) Condition Factor (K)	50
3.7.2.2. Fish Organs Response	51
1) Hepatosomatic index (HSI)	51
2) Spleen Somatic Index (SSI)	51
3) Gills Percentage (GP)	51
4) Digestive Tract Percentage (DTP)	52
3.7.2.3. Fish Major Chemical Component Analyses	52
1) Water Content	52
2) Total Protein	52
3) Total Lipids	52
4) Ash	53
3.7.2.4. Fish Blood Analyses	53
1) Haemoglobin	53
2) Plasma Glucose	53
3) Plasma Total Protein	54

Subject	Page
4) Plasma Total Lipids	54
5) Plasma Urea	54
6) Plasma Uric Acid	54
7) Plasma Creatinine	54
8) ASAT and ALAT Enzymes Activity	54
9) Plasma Alkaline Phosphatase Enzyme	56
Statistical analysis	56
4. Results and Discussion	57
4.1. Phytoplankton Dynamics	57
4.2. Water Quality	60
4.2.1. Physical Properties	60
4.2.1.1. Temperature	60
4.2.1.2. Dissolved Oxygen (DO)	63
4.2.1.3. pH	66
4.2.1.4. Total Alkalinity	69
4.2.1.5. Total Hardness	72
4.2.2. Chemical Properties	72
4.2.2.1. Total Phosphorus	72
4.2.2.2. Total ammonia (NH ₄ + NH ₃)	75
4.2.2.3. Ammonia (NH ₃)	81
4.2.2.4. Nitrite (NO ₂)	85
4.3. Phytoplankton Amelioration of Water Quality	88
4.4. Fish Performance	92
4.4.1. Survivability	92
4.4.2. Growth Pattern	92
4.4.2.1. Average Body Weight (ABW)	92
4.4.2.2. Average Daily Weight Gain (ADWG)	98
4.4.2.3. Total Weight Gain (TWG)	101