

Urinary Nephrin as a biomarker of diabetic nephropathy in patients with type 2 diabetes mellitus

Thesis

Submitted for partial fulfillment in Master Degree in Internal Medicine

Presented by

Mohammed Fawzy Owis

M.B., B.Ch

Supervised by

Prof. Dr. Howayda Abd El-Hameed El-Shinnawy

Professor of Internal Medicine and Nephrology Faculty of Medicine, Ain Shams University

Dr. Mohamed Saeed Hassan

Lecturer of Internal Medicine and Nephrology Faculty of Medicine, Ain Shams University

> Faculty of Medicine Ain Shams University 2018

السكري في مرضى النفرين البولي كمؤشر بيولوجي لإعتلال الكلى □البول السكري من النوع الثاني

رسالة

توطئة للحصول على درجة الماجستير في الباطنة العامة مقدمة من

🗌 محمد فوزي عويس/الطبيب

بكالوريوس الطب و الجراحة كلية الطب. جامعة عين شمس

تحت إشراف

□أد/ هويدا عبد الحميد الشناوي

أستاذ الباطنة العامة و الكلى كلية الطب- جامعة عين شمس

در محمد سعید حسن

مدرس الباطنة العامة و الكلى كلية الطب- جامعة عين شمس

> كلية الطب جامعة عين شمس ٢٠١٨

سورة البقرة الآية: ٣٢

First and foremost thanks to ALLAH, the Most Merciful.

I wish to express my deep appreciation and sincere gratitude to **Prof. Dr. Howayda Abd El-Hameed El-Shinnawy**, Professor of Internal Medicine and Nephrology, Ain Shams University, for her close supervision, valuable instructions, continuous help, patience, advices and guidance. She has generously devoted much of her time and effort for planning and supervision of this study. It was a great honor to me to work under her direct supervision.

I wish to express my great thanks and gratitude to **Dr**. **Mohamed Saeed Hassan**, Lecturer of Internal Medicine and Nephrology, Ain Shams University, for his kind supervision, indispensable advice and great help in this work.

Last and not least, I want to thank all my family, my colleagues,, for their valuable help and support.

Finally I would present all my appreciations to my patients without them, this work could not have been completed.

Dedication

I want to dedicate this work for my father who was there for me through all the difficult times.

I would like to express my deep gratitude and very special thanks to my brothers and my sister, who never stopped encouraging me and giving me the ultimate support.

Finally, I could not forget my mother, the most precious person in my life, who had been wishing always of this moment.

With deep thanks

Contents

Subjects	Page
• List of Abbreviations	I
List of table	III
List of Figures	V
• Introduction	1
Aim of the Work	5
Review of literature:	
Chapter 1: Diabetic nephropathy	6
Chapter 2: New biomarkers of diabetic nep	hropathy 33
Chapter 3: Nephrin	79
• Patients And Methods	91
• Results	100
• Discussion	123
• Summary	131
• Conclusion	134
• Recommendations	135
• Limitations of the study	136
• References	137
Arabic Summary	

&List of Abbreviations

List of Abbreviations

8-OHdG 8-Hydroxy-2'-deoxyguanosine

8-oxodG 8-oxo-7,8-dihydro-2'-deoxyguanosine

ACCORD Action to Control Cardiovascular Risk in Diabetes

ACEi angiotensin converting enzyme inhibitors

ACR Albumin Creatinine Ratio (alb/cr ratio)

AER Albumin Excretion Rate

AGES Advanced Glycosylation End Products

AGT Angiotensinogen

ARBs Angiotensin-II Receptor Blockers

AT- II Angiotensin-II

CKD Chronic Kidney Disease

CrCl Creatinine Clearance

CTGF Connective Tissue Growth Factor

DCCT The Diabetic Control and Complication Trial

DM Diabetes Mellitus

DN Diabetic Nephropathy

EDIC Epidemiology of Diabetes Interventions and

Complications

ELISA Enzyme-Linked Immunosorbent Assay

ESRD End Stage Renal Disease

FSGS Focal Segmental Glomerulosclerosis

&List of Abbreviations

GAG Glycosaminoglycan

GBM Glomerular Basement Membrane

GFR Glomerular Filtration Rate

HbA1C Hemoglobin A1C

HD Hemodialysis

HIV Human Immunodeficiency Virus

KDIGO Kidney Disease Improving Global Outcomes

KDOQI The Kidney Disease Outcomes Quality Initiative

KIM-1 Kidney Injury Molecule-1

L-FABP Liver-Type Fatty Acid–Binding Protein

LVH Left Ventricular Hypertrophy

MAPK Mitogen-Activated Protein Kinase

MCD minimal change disease

miRNA microRNA

MMP Matrix Metalloproteinase

MN Membranous Nephropathy

MPGN Mesangioproliferative Glomerulonephritis

NAG N-Acetyl-beta-Glucosaminidase

NGAL Neutrophil Gelatinase-Associated Lipocalin

PT Proximal Tubule

PTC Proximal Tubule Cell

RAAS Renin-Angiotensin-Aldosterone System

∠List of Abbreviations

RBP	Retinol Binding Protein
SD	The Slit Diaphragm
TGF-β	Transforming Growth Factor-β
TGF-β	Transforming growth factor
TNF-α	Tumor Necrosis Factor-alpha
UKPDS	United Kingdom Prospective Diabetes Study
VEGF	Vascular Endothelial Growth Factor
VEGF-A	Vascular Endothelial Growth Factor-A
WT1	Wilm's Tumor-1

List of Table

Tab. No.	Subject	Page
Table (1)	Clinical stages of DN	13
Table (2)	HbA1c level in patients with advanced CKD	31
- II (0)	Clinical studies of urinary biomarkers associated	75
Table (3)	with diabetic kidney disease	
Table (4)	Gender distribution among study groups	100
Table (5)	Age of study groups	100
Table (6)	Systolic and Diastolic blood pressure in study groups	101
Table (7)	Nephrin level in study groups	102
Table (8)	Demographic data of different diabetic groups	103
Table (9)	Laboratory data of study population	104
Table (10)	Comparison between different study groups as regards nephrin level	106
Table (10)		
Table (11)	Comparison between different study groups as regards albumin/creatinine ratio	107
Table (12)	Comparison between different study groups as regards eGFR	108
Table (13)	Anti-Diabetic in different study groups	109
Table (14)	Complication of DM in different study groups	110
Table (15)	Co-Morbidities of study groups	110
Table (16)	Comparison between nephrin levels in all patients with different clinical conditions	111

∠List of Table

Tab. No.	Subject	Page
Table (17)	Correlation of Nephrin with demographic data in all patients	112
Table (18)	Correlation of Nephrin with laboratory data in all patients	114
Table (19)	Correlation of Nephrin with demographic data in different diabetic groups	116
Table (20)	Correlation of Nephrin with laboratory data in different diabetic groups	117
Table (21)	Correlation of Nephrin with albumin/creatinine ratio in all patients	118
Table (22)	Correlation of Nephrin with albumin/creatinine ratio in different diabetic groups	119
Table (23)	Regressive analysis for factors affecting nephrin levels in all patients	121
Table (24)	Regressive analysis for factors affecting nephrin level in normoalbuminuric patients	121
Table (25)	Regressive analysis for factors Affecting nephrin level in microalbuminuric patients	122
Table (26)	Regressive analysis for factors affecting nephrin level in macroalbuminuric group	122

€List of Figures

List of Figures

Fig. No.	Subject	Page
Fig. (1)	Glomerular pathological classification in DN	19
Fig. (2)	Age of study groups	101
Fig. (3)	Nephrin level in study groups	102
Fig. (4)	Weight in different study groups	104
Fig. (5)	HB level in different study groups	105
Fig. (6)	Albumin level in different study groups	105
Fig. (7)	Nephrin level in different groups	106
Fig. (8)	eGFR using COCKCRAFT equation in different study groups	108
Fig. (9)	Anti-Diabetic in different study groups	109
Fig. (10)	Correlation between weight and nephrin in all patients	113
Fig. (11)	Correlation between age and nephrin in all patients	113
Fig. (12)	Correlation between eGFR (MDRD) and nephrin in all patients	115
Fig. (13)	correlation between eGFR (COCKCRAFT) and nephrin in all patients	115
Fig. (14)	Correlation between alb/creatinie ratio and nephrin in all patient	118
Fig. (15)	Correlation between alb/creatinine ratio and nephrin in normoalbuminuric patients	119
Fig. (16)	Correlation between albu/creatinine ratio and	120

∠List of Figures

Fig. No.	Subject	Page
	nephrin in microalbuminuric patients	
Fig. (17)	Correlation between alb/creatinine ratio and nephrin in macroalbuminuric patients	120

ABSTRACT

Background: Our study was a cross sectional study aimed to assess the role of urinary nephrin as an early biomarker for diabetic nephropathy in patients with type 2 diabetes mellitus. We measured urinary nephrin in 75 patients with type 2 DM. Patients were divided according to albumin/creatinine ratio into 3 groups (25 normoalbuminuric patients, 25 microalbuminuric patients, 25 macroalbuminuric patients) and they were compared to 15 healthy control subjects.

Objective: To evaluate the role of urinary nephrin as an early biomarker for diabetic nephropathy in patients with type 2 diabetes mellitus.

Patients and Methods: We compared those three groups (normoalbuminuric, microalbuminuric and macroalbuminuric groups) as regard demographic data, laboratory results and clinical parameters. We excluded patients with other causes of proteinuria or podocytopathy rather than diabetic nephropathy.

Results: Our results show that there was no significant difference between study groups as regard sex, age and blood pressure. We found in our study that urinary nephrin was higher in all patients groups than control group, with macroalbuminuric group had the highest level, and normoalbuminuric group has the lowest level in patients group, but still significantly higher than control group. We found also that there was a positive correlation between urinary nephrin levels and the degree of albuminuria in all patients and in different groups including normoalbuminuric group.

Conclusion: We also compared between different study groups as regard estimated glomerular filtration rate (eGFR) (using MDRD and COCKCRAFT), this showed that macroalbuminuric group had lower eGFR than normoalbuminuric group, while there was no significant difference in eGFR between microalbuminuric group and the other two groups. (Why writing the last part with conclusion NOT with results???)

Keywords: Diabetes Mellitus – Chronic Kidney Disease - Diabetic Nephropathy - Albumin Excretion Rate

Introduction

Approximately 366 million people were diagnosed with diabetes mellitus (DM) worldwide in 2011 and this is expected to increase to 552 million by 2030 (*Zimmet et al.*, 2014).

Diabetes is the leading cause of chronic kidney disease (CKD) in many developed countries and is also rapidly becoming the leading cause in developing countries as a consequence of the global increase in type 2 diabetes and obesity (*Hojs et al.*, 2015).

Diabetic nephropathy occurs in up to 40% of people with type 1 or type 2 diabetes. People with diabetic nephropathy are not only at significant risk of progression to end-stage renal disease (ESRD), but there is also a concomitant increase in cardiovascular morbidity and mortality. Hence, it is important to identify patients at risk of diabetic nephropathy and also those at high risk of progression to ESRD (*Hojs et al.*, 2015)

Diagnostic marker to detect diabetic nephropathy (DN) at early stage is important as early intervention can slow the loss of kidney function and reduce adverse outcomes. Microalbuminuria has been accepted as the earliest marker for development of DN (*Fiseha*, 2015).

However, a proportion of patients with either type 1 or type 2 diabetes does not follow classical albuminuric