

Ain Shams University University College for Women For art, science, and education

Spectroscopic studies of nanometric Zinc Oxide

Thesis Submitted for The M.Sc.Degree in Physics By

NEVEEN MAHMOUD HAMED HASSANIN

SUPERVISOR COMMITTEE

Prof. Dr. A.B.EL-Bialy

Professor of spectroscopy
University collage for women
For Art, Science and Education
Physics Department.
Ain Shams University

Prof. Dr. S.S.Hamed

Professor of spectroscopy
University collage for women
For Art, Science and Education
Physics Department.
Ain Shams University

Prof. Dr. S.Abd.EL-Mongy Ahmed

Professor of spectroscopy
University collage for women
For Art, Science and Education
Physics Department.
Ain Shams University
2018

Ain Shams University University College for Women For art, science, and education

Approval sheet M.Sc. thesis

NAME OF STUDENT: Neveen Mahmoud Hamed Hassanin

Thesis Title: Spectroscopic studies of nanometric Zinc Oxide

SUPERVISOR COMMITTEE

Prof. Dr. A.B.EL-Bialy

Professor of spectroscopy University collage for women For Art, Science and Education Physics Department. Ain Shams University

Prof. Dr. S.S.Hamed

Professor of spectroscopy University collage for women For Art, Science and Education Physics Department Ain Shams University

Prof. Dr. S.Abd.EL-Mongy

Professor of spectroscopy University collage for women For Art, Science and Education Physics Department. Ain Shams University

Date of Research: / /	
Post Graduate Studies Department	
Approval Stamp	Approval Date: / /
Faculty Council Approval	University Council Approval
Date: / /	Date: / /

Approval sheet M. Sc. Thesis

NAME OF STUDENT: Neveen Mahmoud Hamed Hassanin

Thesis Title: Spectroscopic studies of nanometric Zinc Oxide

SCIENTICIF DEGREE: M. Sc.

DEPARTMENT: physics

NAME OF FACULTY: College for women

UNIVERSITY: Ain Shams.

بسم الله الرحمن الرحيم

وفل ربي زحني

صدق الله العظيم

To

My Parents,

My Husband: Mohamed Taher,

My Sister: Noheir, My Brother: Ahmed,

My Sons: Seif and Monzer,

My Daughter: Lara

AND

For the Spirit of my father

Taher Rashad

ACKNOWLEDGEMENT

ACKNOWLEDGEMENT

First of all my great thanks go to ALLAH, the beneficent, the merciful

My great thanks are to **Prof. Dr. A.B.EL-Bialy** for her kind supervision, patience, valuable suggestions and guidance.

My great thanks to **Prof. Dr. S.S.Hamed** for her kind supervision, guidance and the great efforts with me in my work especially my theoretically work.

My great thanks to my supervisor **Prof. Dr. S.Abd.El-Mongy** for all efforts with me in my work experimentally and theoretically that are highly appreciated.

I wish to express my appreciation for the assistance and encouragement given to me by my family and my friends in phy. Department (Dr. Doaa Hassan and Dr. Fawzaya Ibraheem)

Gomtemis

CONTENTS

ABSTRACT	Page
SUMMARY	
CHAPTER (I): GENERAL INTRODUCTION AND	
LITERATURE SURVEY	
1.1. Introduction1.2. Crystal structure of ZnO1.3. Nanotechnology1.4. Literature survey1.5. Aim of the present work	1 1 2 3 12
CHAPTER (II): THEORETICAL CONCEPTS	
2.1. X-Ray Diffraction (XRD)2.1.1. Fundamental Principles of X-Ray Diffraction2.1.2. Crystallite Size Determination from Line Broadening	13 13 14
2.2. Transmission Electron Microscope (TEM)	14
2.3. Nature of molecular spectra	17
2.3.1. Infrared spectra2.4. Photoluminescence spectroscopy	18 22
2.7. I howfullinescence spectroscopy	

CHAPTER (III): EXPERIMENTAL TECHNIQES	AND				
INSTRUMENTATION					
 3.1. X-Ray Diffractometer 3.2. The Infrared Spectrometer 3. 3. Transmission Electron Microscope (TEM) 3.2.3.1 Imaging of TEM 3.4. Photoluminescence Spectroscopy 	26 28 31 32 35				
CHAPTER (IV): RESULT AND DISCUSSION					
 4.1. Material and sample preparation 4.2. Factors affecting the synthesis of ZnO nanoparticles 4.2.1. The effect of Temperature 4.2.1.1. X-Ray diffraction pattern results 4.2.1.2. TEM results 4.2.1.3. FTIR results 4.2.2. Effect of Concentration of (NaOH) 4.2.2.1. X-Ray results 4.2.2.2. FTIR results 4.2.3. The effect of stirring time 4.3. Photoluminescence Excitation spectra (PL) 	35 36 36 36 41 43 47 47 50 54 58				
Conclusion	63				
Reference	66				
Arabic Summary					

LIST OF FIGURES

No	Title	Page
1.1	Fig. 1.1 ZnO crystals(a) Würtzite structure, (b) blend structure	2
2.1	Bright field imaging and dark field imaging for TEM	16
2.2	Diagram coordinates in a luminescent center	23
3.1	Schematic showing of X-Ray Diffractometer	25
3.2	Schematic diagram of Michelson interferometer	27
3.3	Schematic diagram of lamellar grating instrument	28
3.4	Schematic diagram of rapid scanning interferometer FTIR spectrometer	31
3.5	Nicolet 6700 FTIR Spectrometer	33
3.6	Photoluminescence Spectrometer	36
4.1	XRD pattern of (ZnO) nanoparticles with changing the temperature (A) 30°C, (B) 60°C and (C) 90°C (NaOH concentration 4mol, stirring time 2h)	38

No	Title	Page
4.2	The relation between (A) full width at half maximum and (B) the grain size of ZnO nanoparticles at different temperatures	40
4.3	Transmission Electron Microscope (TEM) of (ZnO) nanoparticle at temperature 30°C, concentration of NaOH 4 mol and stirring time 2 hrs	41
4.4	Transmission Electron Microscope (TEM) of (ZnO) nanoparticle at temperature 60°C, concentration of NaOH 4 mol and stirring time 2 hrs	42
4.5	FT-IR spectra of the synthesized (ZnO) nanoparticle at various grows temp. (A, B, C) (30, 60, 90) °C respectively, NaOH concentration 4 mol, stirring time 2hrs.	44
4.6	XRD pattern of (ZnO) nanoparticles at temperature 30°C, stirring time 2 hours and at (NaOH) concentrations (A) 2, (B) 3, (C) 4 and (D) 5mol	47
4.7	The relation between (A) particle size and (B) FWHM of Synthesized (ZnO) nanoparticles with increasing the (NaOH) concentration	49
4.8	IR absorption spectrum of (ZnO) nanoparticle at temperature 30°c, for 2 hours stirring and at (NaOH) molarities (A)2, (B) 3, (C) 4 and (D) 5mol	51
4.9	XRD pattern of the synthesized (ZnO) nanoparticles for stirring time (A) 2h and (B) 4 h (concentration of (NaOH) 2mol and temp 30°C)	54
4.10	FT-IR absorption spectra of synthesized (ZnO) nanoparticles at temperature 30°C, concentration 2mol of (NaOH) and stirring time (A) 2 hours and (B) 4 hours.	55

No	Title	Page
4.11	PL Spectra of (ZnO) nanoparticle excited at $(\lambda_{exc}=320\text{nm})$ at room temperature	59
4.12	PL Spectra of (ZnO) nanoparticle excited at $(\lambda_{exc}=360\text{nm})$ at room temperature	61

LISTS OF TABLES

No	Title	Page
4.1	2θ angle, intensity and FWHM of the highest peak of (ZnO) NPs at different temperatures.	39
4.2	Infrared absorption band and its assignments for the synthesized (ZnO) nanoparticle at various grows temp (30, 60, 90) °C, NaOH concentration 4 mol, stirring time 2hrs	46
4.3	the variation of Full Width at Half Maximum (FWHM) and the grain size of the synthesized (ZnO) nanoparticles at different concentrations of (NaOH).	48
4.4	the wavenumber of (ZnO) nanoparticle (FT-IR) peaks at temperature 30°c, 2 hours stirring and at various concentration of (NaOH)	53
4.5	the wavenumber of (ZnO) nanoparticle (FT-IR) peaks at temperature 30°c, concentration of (NaOH) 2mol at stirring time 2 and 4 hours	57