

عسام مفريى

تبيكة المعلومات الجامعية

بسم الله الرحمن الرحيم

عسام مغربى

شبكة المعلومات الحامعية

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

عسام مغربى

شبكة المعلومات الجامعية

جامعة عين شمس

التوثيق الإلكتروني والميكروفيلم

قسو

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

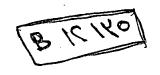
يجب أن

تحفظ هذه الأقراص المدمجة يعيدا عن الغيار

New York of the Control of the Contr

عسام مغربى

شبكة المعلومات الجامعية


حسام مغربى

شبكة المعلومات الحامعية

بالرسالة صفحات لم ترد بالأصل

QUALITY CONTROL OF THE SINGLE PHOTON EMISSION COMPUTED TOMOGRAPHY IMAGING

SIN

Thesis

Submitted to the Medical Research Institute, University of Alexandria in partial fulfilment of the requirements of the Master degree of Bio. and Medical Physics

Ola Mohamed El-Basueny Zoueil

MBBCH (Alex)
Demonstrator of Medical Lhysics in the
Department of Radiodiagnosis
Faculty of Nedicine
University of Alexandria

Faculty of Medicine University of Alexandria

SUPERVISORS

Prof. Dr. Mohamed Farid Noaman

Professor of Medical Physics and Kead of the Department of Radiodiagnosis Faculty of Medicine University of Alexandria

Prof. Dr. Mohamed Maged El-Din Nofal

Professor of Nuclear Medicine, Faculty of Medicine, University of Alexandria

Prof. Dr. Mohamed Kamal El-Din Nasra

Professor of Biophysics Dept. of Biophysics, Bioengineering and Medical Statistics Medical Research Institute University of Alexandria

Acknowledgement

words can faithfully and adequately express my indebtedness to my Professor Dr. Mohamed Farid Noaman, Professor of Medical Physics and Head of the Department of Radiodiagnosis for his worthy supervision, valuable help and kind support throughout this work. His scientific generosity contributed a lot to the final shape of work. I was honoured being continuously encouraged by him.

My deepest and endless thanks and gratitude to **Prof. Dr.** Mohamed Magd El-**Din Nofal**, Professor of Nuclear Medicine, Faculty of Medicine, University of Alexandria for his advice and countructive criticism Dr. Nofal devoted a lot of his time to guide and revise the work.

I would like as well to achnowledge my deepest thanks to **Lrof**. Dr. Kamal Nasra, **Lrofessor** of Bio and Medical Lhysics in the Medical Research Institute, University of Alexandria for his effort in supervision and continuous guidance.

I sincerely thank **Dr. Samia Abd El-Gawad,** Assistant Drofessor of Dhysics in the department of Radiodiagnosis, Faculty of Medicine for her advice and assistance.

I owe special thanks to **Dr. Adel Gabr Lecturer** of **Physics in** the Department of Radiodiagnosis, Faculty of Medicine, Alexandria University for his kind help and sincere guidance.

Lastly I would like to give special thanks to Dr. Essam Welaya, members of Mostafa Kamel Armed Forces, Hospital and members of Alex. Scan for their cooperation and help.

To

My Adorable Father

And

My Devoted Mother

LIST OF TABLES

		<u>Page</u>
Table 1:	Five different SPECT filters arranged according to imaging parameters.	20
Table 2:	Specifications of camera A and camera B.	88.

LIST OF FIGURES

	·	
774		<u>Page</u>
Figure 1:	Figure 1: Schematic diagram showing the value of SPEC versus the planar imaging.	
Figure 2:	Schematic diagram of the major components of a scintillation camera and the several possible gamma ray interactions within the source, collimator and crystal.	9
Figure 3:	The Fourier transform that illustrate how frequencies of respective amplitudes sum to provide the original curve.	16
Figure 4:	Back-projection in terms of data acquisition.	
Figure 5:	The SPECT paradigm.	
Figure 6:	Parallel and non-parallel holes of the collimators.	
Figure 7:	Bar phantom.	
Figure 8:	Jasczczak phantom	
Figure 9:	Typical curve illustrating the count rate of a gamma camera.	65 80
Figure 10:	Camera A (GCA/7100) and Camera B (Integrated Diacam).	87
Figure 11:	Parallel line equal spacing phantom, acrylic phantoms and ⁵⁷ Co source.	91
Figure 12:	Wellhofer Densitometer.	99

LIST OF FIGURES

		-
Figure 13:	Intrensic uniformity took 6	<u>Page</u>
Figure 14:	The state of the camera A.	
	Intrensic uniformity test for camera A.	104
Figure 15:	and they test for camera A.	
Figure 16:	Intrensic uniformity test for camera B.	
Figure 17:	Intrensic uniformity test for camera B.	
Figure 18:	Intrensic uniformity test for camera B.	
Figure 19:	Extrensic uniformity test of camera A for LESHR collimator.	108 109
Figure 20:	Extrensic uniformity test of camera A for LEGP collimator.	110
Figure 21:	Extrensic uniformity test of camera A for LESHR collimator.	111
Figure 22:	Extrensic uniformity test of camera A for LEGP collimator.	112
Figure 23:	Extrensic uniformity test of camera A for LESHR collimator.	113
Figure 24:	Extrensic uniformity test of camera A for LEGP collimator.	114
Figure 25:	Extrensic uniformity test of camera B for LEAP collimator.	115
Figure 26:	Extrensic uniformity test of camera B for LEAP collimator.	116
Figure 27:	Extrensic uniformity test of camera B for LEAP collimator.	117
Figure 28:	Densitometric result of camera A (X-axis scan).	
Figure 29:	Densitometric result of	119
<u> </u>	Densitometric result of camera A (Y-axis scan).	120

Figure 20.		<u>Page</u>	
Figure 30:	(X-axis scall).		
Figure 31:	Densitometric result of camera B (Y-axis scan).		
Figure 32:	Intrensic spatial resolution and linearity of camera A.	126	
Figure 33:	Intrensic spatial resolution and linearity of camera A.	127	
Figure 34:	Intrensic spatial resolution and linearity of camera A.	128	
Figure 35:	Parallel hole collimator test for LEGP collimator of camera A.	130	
Figure 36:	Parallel hole collimator test for LESHR collimator of camera A.	131	
Figure 37:	Parallel hole collimator test for LEGP collimator of camera A.	132	
Figure 38:	Parallel hole collimator test for LESHR collimator of camera A.	133	
Figure 39:	Parallel hole collimator test for LEGP collimator of camera A.	134	
Figure 40:	Parallel hole collimator test for LESHR collimator of camera A.	135	
Figure 41:	Parallel hole collimator test for camera B.	136	
Figure 42:	Parallel hole collimator test for camera B.	_	
Figure 43:	Parallel hole collimator test for camera B.	137	
Figure 44:	Center of rotation test for camera A.	138	
Figure 45:	Center of rotation test for camera A.	140	
Figure 46:	Center of rotation test for camera A.	141	
Figure 47:	Center of rotation test for camera A. Center of rotation test for camera B.	142	
Figure 48:		143	
B C -TU.	Center of rotation test for camera B.	144	

		Page
Figure 49:	Center of rotation test for camera B.	145
	Bone scan performed by camera A.	147
	Bone scan performed by camera B.	148

.

← ...
...

. *

LIST OF CONTENTS

<u>Chapter</u>	
Introduction and Review of Literature	1
- Single Photon Emission Computed Tomography	1
- Historical Prespectives	4
Physics of Gamma Photon Emission	8
- SPECT Reconstruction	12
- Principles of SPECT	22
- Quality Control	38
- Field Uniformity	42
- Center of Rotation	54
- Spatial Resolution	59
- Intrinsic Spatial Linearity	71
- Intrinsic Energy Resolution	72
- System Sensitivity	73
- Multiple-Window Spatial Registration	75
- Count Rate Performance	79
• Aim of the Work	85
 Material and Methods 	86
• Results and Discussion	100
• Summary and Conclusions	149
• References	_
• Protocol	151
• Arabic Summary	
··· upic Dullillal y	