

بسم الله الرحمن الرحيم

-Call 6000

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

جامعة عين شمس

التوثيق الإلكتروني والميكروفيلم

قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة يعيدا عن الغيار

بالرسالة صفحات لم ترد بالأصل

New dietary factors implicated in the pathophysiology of microvascular complications in type 1 diabetes mellitus.

Thesis

Submitted for partial fulfillment of the MD Degree in Pediatrics.

 $\mathbf{B}\mathbf{y}$

Yasser El-Said Ali Behairy

M.B., B.Ch- M.Sc in Pediatrics

Under Supervision of

Prof. Dr. Mona Hussein El-Samahi

Professor of Pediatrics

Faculty of Medicine - Ain Shams University

Prof. Dr. Safinaz Adel EL-Habashy

Professor of Pediatrics

Faculty of Medicine - Ain Shams University

Prof. Dr. Zeinab Mohamed Ramadan Talib

Professor of Nutritional Biochemistry Nutrition Institute, Cairo.

Ass. Prof. Dr. Sahar Mohamed Ahmed Hassanein

Ass. Professor of Pediatrics,

Faculty of Medicine- Ain Shams University

Faculty of Medicine Ain Shams University

2002

(1 W) C

M. J. W.

ACKNOWLEDGEMENT

First and foremost, thanks are all to Allah

I would like to express my great thanks, gratitude and respect to our eminent professor **Dr. Mona Hussein El-Samahi** Professor of pediatrics, Faculty of Medicine, Ain Shams University, For giving me the privilege of working under her kind supervision. Her generous help, fruitful advice and constant support were very important in achieving this work.

I greatly feel indebted to **Dr. Safinaz Adel EL-Habashy**, Professor of pediatrics, Faculty of Medicine, Ain Shams University, for her enthusiastic guidance and constant support. Her sincere effort and help will never be forgotten.

I am greatly grateful to **Dr. Zinab Mohamed Ramadan Talib,** Professor of Nutrition Biochemistry, Nutrition Institute,
Cairo for her help and effort in achieving the practical part of the work.

I would like to express my deep gratitude to Dr. Sahar Mohamed Ahmed Hassanein, Assistant Professor of pediatrics, Faculty of Medicine, Ain Shams University, For his great encouragement and guidance for doing this work.

Many thanks and deep appreciation goes to **Dr. Omayma Mohamed Said**, Researcher in National Research Center,
Dokki, Cairo, for assessment and guiding the dietetic part of
this work.

Last but not least, I would like to convey my great thanks and gratitude to our dear diabetic patients, who participated in the work and to their families for their great help in achieving this work.

TABLE OF CONTENTS

List of Abbreviations	i
List of Tables	iv
List of Figures	vi
Introduction	viii
Aim of the Work	xi
Review of Literature	1
Patient and Method	77
Results	85
Discussion	116
Summary and Conclusion	136
Recommendations	139
References	140
Arabic Summary	

LIST OF ABBREVIATIONS

ACE Angiotensin-converting enzyme

ADA American Diabetes Association
AGE Advanced glycation end products

ALA Alpha-linolenic acid

BCO Black current seed oil

BMI Body mass index

CAN Cardiovascular autonomic neuropathy

CVD Cardio vascular disease
DBP Diastolic blood pressure

DCCT Diabetes control and Complications Trial

DHA Docosahexaenoic acidDKA Diabetic ketoacidosis

DM Dibetes millitus.DN Diabetic nephropathyDNA Deoxyribonucleic acid

EDRF Endothelium-derived relaxing factor

EPA Eicosapentaenoic acid EPO Evening primrose oil. ESRD End stage renal disease

FA Fatty acid

FN False negative FP False positive

GAD Glutamic acid decarboxylase
GLC Gas liquid chromatography

GM-CSF Granulocyte-macrophage colony-stimulating

factor

Hb Hemoglobin

HbAic Glycated hemoglobin

Hcy Homocysteine

HDL High-density lipoprotein

HNF Hepatic nuclear transcription factor

HPLC High-performance liquid chromatographic

Ht Height

HT hydroxy tryptophane
IAA Insulin auto antibodies

ICAS Include islet cell antibodies

ICF Intra-cellular fluid

IFG Impaired fasting glycemiaIGT Impaired glucose tolerance.

IHD Ischemic heart disease

L(a) Lipoprotein (a) LA Linoleic acid

LDL Low-density lipoprotein
LPS Lipopolysaccarhide
MA Microalbuminuria
MBS Mean bloodsugar

MODY Maturity- onset diabetes in the young.

MTHFR Methylenetetrahydrofolate reductase

MUFA Mono-unsaturated fatty acids
MVC Micro-vascular complications

NPDR Non-Proliferative diabetic retinopathy

NS Non-significant.

OGTT Oral glucose tolerance test
PAD Peripheral arterial disease
PAF Platelet activating factor

PC Percentile

PCR Polymerase chain reaction

PDR Proliferative diabetic retinopathy

PG Plasma glucose

PN Peripheral neuropathy

PUFA Polyunsaturated fatty acid)

SBP Systolic blood pressure

SD Standard deviation SFAs Saturated fatty acids

Sig. Significant

SMBG Daily Self monitored blood glucose

SN Serial number
TG Triglycerides
TN True negative
TP True positive

UAE Urinary albumin excreation

VEGF Vascular endothelial growth factor

VWF von- Willebrand factor

 $\begin{array}{cc} Wt & \text{Weight} \\ \omega & \text{Omega} \end{array}$

LIST OF TABLES

Table	Comment	Page
Table 1	Etiologic classification of diabetes mellitus	3
Table 2	Other specific types of diabetes	4
Table 3	Clinical classification of diabetic	25
	neuropathies	
Table 4	Stages of diabetic nephropathy	32
Table 5	Infections associated with diabetes	36
Table 6	ADA Goals for Glycemic Control	37
Table 7	Approximate Pharmacokinetic Parameters	45
	of Currently Available Insulin Preparations	
	Following Subcutaneous Injection of an	
	Average Patient Dose	
Table 8	Factors affecting the bioavailability and	46
	absorption rate of subcutaneously injected	
	insulin	
Table 9	Showing biochemical indices of glycemic	51
	Control	
Table 10	Examples of fatty acids	53
Table 11	Functional effects of ω 3 fatty acids in the	59
	cardio vascular system	
Table 12	Effects of ω 3 fatty acids on factors	59
	involved in the pathophysiology of	_
	atherosclerosis and inflammation	
Table 13	Causes of Hyperhomocysteinemia	69
Table 14	Comparison between all diabetic patients	85
	and control subjects, as regards clinical and	
	laboratory parameters.	
Table 15	Comparison between diabetic patients	87
	without MVC (Group A) and control	
	subjects, as regards clinical and laboratory	
	parameters.	

,	· · · · · · · · · · · · · · · · · · ·	
Table 16	Comparison between diabetic patients with MVC (Group B) and control subjects (Group C), as regards clinical and laboratory parameters.	89
Table 17	Comparison between diabetic patients with MVC (group B) and diabetic patients without MVC (group A), as regards clinical and laboratory parameters.	91
Table 18	Correlation between plasma homocysteine and various clinical and laboratory parameters in all diabetics, group A, and group B.	95
Table 19	Correlation between omega 3 fatty acid and various clinical and laboratory parameters in all diabetic patients, group A, and group B.	105
Table 19	Plasma homocysteine in diabetic with and without MVC was distributed.	108
Table 20	Plasma Linolenic acid (ω3) (%) in diabetic with and without MVC was distributed.	109
Table 21	Row clinical data of Group (A) diabetic patients	110
Table 22	Row Laboratory data of Group (A) diabetic patients.	111
Table 23	Row clinical data of controls.	112
Table 24	Row Laboratory data of Controls.	113
Table 25	Row clinical data of Group(B) diabetic patients.	114
Table 26	Row Laboratory data of Group(B) diabetic patients.	115