

Ain Shams University
Faculty of Engineering
Structural Engineering Department

Application of locally Available Natural Material In Thermal Insulation

A Thesis

Submitted in partial fulfillment for the Requirements of the Degree of

MASTER OF SCIENCE

In

CIVIL ENGINEERING (STRUCTURES)

BY

Eng. NOHA ZAKI HAREEDY SHALABY

B.SC., 2002, Building and Construction Department Faculty of Engineering Ain Shams University

Supervisor by

Prof. Dr. SAYED ABD El RAOUF NASR

Professor of Properties and Testing of Material Structural Engineering Department, Faculty of Engineering Ain Shams University

Dr. EHAB FAWZY SADEK

Assistance Professor, Structural Engineering Department Faculty of Engineering-Ain Shams University

Faculty of Engineering Ain Shams University Cairo- 2018

Ain Shams University Faculty of Engineering

Approval Sheet

Thesis : Master of Science in Civil Engineering (Structural)

Student Name : Noha Zaki Hareedy Shalby

Thesis Title : Application of locally Available Natural Material in Thermal

Insulation

Examiners Committee:

Signature

PROF. DR. GODA MOHAMED GHANEM

.....

Professor of Properties and Testing of Material Structural Engineering Department, Faculty of Engineering, Helwan University

PROF. DR. TAREK ALI EL SAYED

Professor of Properties and Testing of Material Structural Engineering Department, Faculty of Engineering, Helwan University

PROF. DR. EL SAYED ABD EL RAOUF NASR

•••••

Professor of Properties and Testing of Material Structural Engineering Department, Faculty of Engineering, Ain Shams University (Supervisor)

Date: / / 2018

Statement

This thesis is submitted to Faculty of Engineering, Ain Shams

University, Cairo Egypt, for the degree of Master of Science in Structural

engineering.

The work included in this thesis was carried out by the author in

the department of Structural engineering, Ain Shams University, from

2014 to March 2018

No part of this thesis has been submitted for a degree or

qualification at any other University or Institute.

Date: / / 2018

Name: Noha Zaki Hareedy

Signature:

iii

INFORMATION ABOYT THE RESEARCHER

Name: Noha Zaki Hareedy Shalaby

Last Academic Degree: 2002, B.SC. Building and Construction Department

Faculty of Engineering, Ain Shams University

Present Job : Civil Engineer, Ministry of water resources and irrigation

ACKNOWLEDGMENT

Praise is to ALLAH with the blessing of whom the good deeds are fulfilled

I would like to express my deep gratitude and ultimate appreciation to **Prof. Dr. El Sayed Abd El Raouf Nasr** for his continuous supervision, support and advice throughout this research.

Special thanks for my supervisor **Dr. Ehab Fawzy Sadek** for his friendly help, valuable assistance, guidance, patience and endless support throughout this research, and reviewing of the manuscript are greatly acknowledged.

Last but not least, I dedicated this to my **parents**; it is their unconditional love that motivates me to finish this work. I also dedicate this thesis to my sister **Ms. Rehab Zaki** and my sister **Ms. Manar Zaki** who have provided me with a strong love shield that always surrounds me. Also special thanks to my friend **Ms. Heba Hussain** for her assistance which is well appreciated.

Noha Zaki Hareedy

AIN SHAMS UNIVERSITY
FACULTY OF ENGINEERING
DEPARTMENT OF STRUCTURAL ENGINEERING

Abstract of the M.Sc. Thesis Submitted by

Eng. / Noha Zaki Hareedy Shalaby

Title of the thesis

APPLICATION OF LOCALLY AVAILABLE NATURAL MATERIAL IN THERMAL INSULATION

ABSTRACT

Looking to the rice straw as an environmentally friendly and renewable material, rice straw thermal insulation boards are of considerable interest for energy saving purposes when it is used as building thermal insulation material for walls or ceilings. Development and performance evaluation of new thermal insulation boards manufactured mainly from locally available rice straw and cement mortar is the main aim of this work. This study consists of developing a treatment method of rice straw aiming to enhance its bond with the surrounding mortar, manufacturing of thermal insulation boards from rice straw and investigating the physical and mechanical properties of the produced boards. The bonding efficiency between rice straw and mortar was analyzed through testing the compressive strength and flexural strength of boards with different rice straw contents and different types of additives to the mixtures used to enhance the boards properties. Thermal insulation properties and fire resistance of the produced boards have been investigated as well. The results indicated that the optimum physical and mechanical properties of boards are obtained with rice straw content of 20% and 30% it was found that the thermal insulation boards had fairly low thermal conductivity, ranging from 0.21 to 0.25 W/ (m.K). The fire resistance of rice straw boards was found to be much better than the conventional industrial and commercial types of the thermal insulation boards.

 \mathbf{v}

TABLE OF CONTENTS

ACKNOWLEDGMENT	iv
ABSTRACT	v
TABLE OF CONTENTS	vi
LIST OF FIGURES	ix
LIST OF TABLES	xii
1. INTRODUCTION	1
1.1 Background	1
1.2 Problem Definition	3
1.3 Aims of The Study	3
1.4 Thesis Outlines	4
2. LITERATURE REVIEW	6
2.1 Introduction	6
2.2 Heat Transfer	6
2.2.1 Heat Transfer Techniques	6
2.2.2 Factors Affecting The Heat Transfer	8
2.3 Thermal Insulation Materials	8
2.3.1 Conventional Thermal Insulation Materials	9
2.3.1.1 Expanded polystyrene (EPS)	9
2.3.1.2 Extruded Polystyrene (XPS)	11
2.3.2 Unconventional (Natural) Thermal Insulation Materials	12
2.3.2.1 Pineapple Leaves	12
2.3.2.2 Corn Cobs	15
2.3.2.3 Rice Straw	17
2.3.2.3.1 Prefabricated Straw-Bale Panels	17
2.3.2.3.2 Compressed Straw-Based Boards	18
2.3.2.3.3 Rice Straw Cementations Composite	23

2.3.2.3.4 Concrete Mixes Containing Rice Straw	30
2.4 Need For The Current Research	33
3. EXPERIMENTAL PROGRAM	34
3.1 Introduction	34
3.2 Materials	34
3.2.1 Water	34
3.2.2 Rice Straw	35
3.2.3 Fine Aggregate	35
3.2.4 Fly Ash	35
3.2.5 Binders substances	35
3.2.6 Chemicals	35
3.3 Experimental Work	36
3.3.1 Treatment Method for Rice Straw	36
3.3.1.1 Rice Straw Preparation	36
3.3.1.2 Determination of physical and mechanical properties of untreated and treated rice straw-Cement Composite	37
3.3.2 Towards The Best Mix Design	38
3.3.3 Determination of physical and mechanical properties of chosen mix based on length of rice straw	41
3.3.4 Determination of physical and mechanical properties of thermal insulation boards from rice straw based on content of rice straw	41
3.4 Experimental Tests	44
3.4.1 Density Test	44
3.4.1.1 Bulk Density of Rice Straw Particles	44
3.4.1.2 Bulk Density of Rice Straw Cementitious Board	44
3.4.2 Compressive Test	45
3.4.3 Flexural Test	46
3.4.4 Thermal Conductivity	47
3.4.5 Fire Resistance	48

3.4.5.1 Fire Resistance of Rice Straw Cementitious Board	48
3.5.5.2 Fire Resistance of Extruded Polystyrene (XPS)	49
4. EXPERIMENTAL RESULTS AND DISCUSSIONS	51
4.1 Introduction	51
4.2 Effect of Rice Straw Treatment on Properties	51
4.3 Properties of Different Mixtures with Treated Rice Straw and CaCl ₂ 4.4 Effect of Porticle Size of Price Straw on Properties	52 53
4.4 Effect of Particle Size of Rice Straw on Properties	
4.5 Rice Straw Density and Dry Density of Rice Straw Board	56
4.6 Compressive Strength	57
4.7 Flexural Strength	58
4.8 Thermal Conductivity	59
4.9 Fire Resistance	60
4.9.1 Fire Resistance of Rice Straw Board	60
4.9.2 Fire Resistance of Extruded Polystyrene (XPS)	63
4.9.3 Comparing between rice straw board and extruded polystyrene (XPS) based on fire resistance	64
4.10 Effect of load level dependent deflection of rice straw beam	66
5. SUMMARY AND CONCLUSION	72
5.1 Summary	72
5.2 Conclusions	73
5.3 Recommendations for Future Research	74
REFERNCES	75