FLOW REGIMES, THERMAL AND HUMIDITY PATTERNS IN VENTILATED ARCHAEOLOGICAL TOMB OF HOREMHEB, VALLEY OF THE KINGS, LUXOR

By

Eng. Ahmed Hamdi Abdel-Wahed Metwally Aggoor

A Thesis Submitted to the Faculty of Engineering at Cairo University in Partial Fulfilment of the Requirements for the Degree of MASTER OF SCIENCE

In

MECHANICAL POWER ENGINEERING

FLOW REGIMES, THERMAL AND HUMIDITY PATTERNS IN VENTILATED ARCHAEOLOGICAL TOMB OF HOREMHEB, VALLEY OF THE KINGS, LUXOR

By

Eng. Ahmed Hamdi Abdel-Wahed Metwally Aggoor

A Thesis Submitted to the Faculty of Engineering at Cairo University in Partial Fulfilment of the Requirements for the Degree of MASTER OF SCIENCE

In

MECHANICAL POWER ENGINEERING

Under Supervision of

Prof. Dr. Essam E. Khalil Mechanical Power Engineering Department Faculty of Engineering Cairo University

Dr. Mohamed Aly Ibrahim Mechatronics Engineering Department Faculty of Engineering October 6 University

Dr. Esmail EL-Bialy
Mechanical Power Engineering
Department
Faculty of Engineering
Cairo University

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2015

FLOW REGIMES, THERMAL AND HUMIDITY PATTERNS IN VENTILATED ARCHAEOLOGICAL TOMB OF HOREMHEB, VALLEY OF THE KINGS, LUXOR

By

Eng. Ahmed Hamdi Abdel-Wahed Metwally Aggoor

A Thesis Submitted to the Faculty of Engineering at Cairo University in Partial Fulfilment of the Requirements for the Degree of MASTER OF SCIENCE

In

MECHANICAL POWER ENGINEERING

Approved by the Examining Committee

Prof. Dr. Essam E. Khalil

Thesis Advisors and Member

Prof. Dr. Mahmoud Ahmed Fouad Member

Prof. Dr. Osama Ezzat Abdel-lattifHead of Department of mechanical power engineering at shobra faculty of engineering benha university

Member

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2015 **Engineer:** Ahmed Hamdi Abdel-wahed Metwally Aggoor

Date of Birth: 1 / 10 / 1988

Nationality: Egyptian

E-mail: ahmed_hamdi1988@yahoo.com

Phone.: 01007002396 - 01097930090

Address:

Registration Date: 01 / 10 /2012

Awarding Date:

Degree : Master of Science

Department: Mechanical Power Engineering

Supervisors: Prof. Dr. Essam E. Khalil Hassan Khalil

Dr. Mohamed Ali Ibrahem

Dr. Ismail Mohamed Ali El_Bialy

Examiners: Prof. Dr. Essam E. Khalil Hassan Khalil

Prof. Dr. Mahmoud Ahmed Fouad Prof. Dr. Osama Ezzat Abdel-lattif

Head of Department of mechanical power engineering at shobra

faculty of engineering benha university.

Title of Thesis:

FLOW REGIMES, THERMAL AND HUMIDITY PATTERNS IN VENTILATED ARCHAEOLOGICAL TOMB OF HOREMHEB, VALLEY OF THE KINGS, LUXOR

(Thermal Comfort – Ventilation – KV "King Valley")

Key Words:

Summary:

The discovery of the tomb of King Horemheb (KV57) is one of the greatest discoveries which were made before the discovery of the tomb of Tutankhamen (KV62) which was discovered on 25 February 1908. The tomb of Horemheb is another stage of the evolution of the royal tombs that is consist of two parallel axes. The present research targets to study the effect of mechanical ventilation systems on airflow patterns, in addition to relative humidity distribution and temperature inside the tomb KV57 and the thermal comfort prediction through this work was based on the PMV (Predicted Mean Vote) model and the PPD (Percentage Predicted Dissatisfied) model. The study was executed using computational fluid dynamics (CFD) simulation using a commercial CFD code. All mesh sizes that used in the present work went above 8,000,000 mesh volumes which allowed meaningful and better predictions of the flow regimes.

ACKNOWLEDGEMENT

I hereby would like to express my deep gratitude and thanks to Prof. Dr. Essam E. Khalil, Dr. Mohamed Aly and Dr. Esmail El-bialy for their support, continuous encouragement and distinctive supervision throughout the course of this work. They helped providing me with up to date technical references that were of great help in the present work.

Also, I cannot express; in words; my thanks and gratitude to my family for their great and continuous help and support they provided me to finish this work in a suitable form.

Nevertheless, I cannot forget the support of my colleagues in the Mechatronics Engineering department October 6 University as well as from my Professors for their encouragement and concern throughout the scope of the work.

Finally, I should express my gratitude for the FLUENT® personnel for their kind interest in the current project and their support via supplying us with a free license of the FLUENT® ANYSIS15 CFD package.

TABLE OF CONTENTS

List of Tables	iv
List of Figures	V
Symbols and Abbreviations	xii
Nomenclature	xii
Greek Letters	xiv
List of abbreviations	XV
Abstract	xvi
CHAPTER 1 INTRODUCTION	1
1.1. General	1
1.2. Main factors affecting deterioration of artifacts	2
1.2.1. External factors	3
1.2.2. Internal factors	3
1.2.2.1. Relative humidity	3
1.2.2.2. Temperature	5
1.2.2.3. Molds	5
1.2.2.4. Sound and vibration	6
1.2.2.5. Lighting	7
1.3. Scope of the present thesis work	7
CHAPTER 2 LITERRATURE REVIEW	8
2.1. Introduction	8
2.2. Ventilation in rooms	8
2.3. Ventilation in archaeological tombs of Valley of the Kings, Luxor	18
2.4 Scope of present work	34
CHAPTER 3 THERMAL BEHAVIORS AND HUMAN THERMAL COMFORT	35
3.1. Introduction	35
3.2. Human thermoregulation	36
3.3. Energy balance	37
3.4. Body surface area	38
3.5. Internal heat production	39
3.6. Heat transfer coefficient	39
3.6.1. Convective heat transfer coefficient	39
3.6.2. Radiative heat transfer coefficient	40
3.6.3. Evaporative heat transfer coefficient	40
3.7. Total rate of heat loss from skin (q_{sk})	41
3.7.1. Sensible heat loss from skin	41
3.7.2. Evaporative heat loss from skin	42
3.8. Total rate of heat loss through respiration (q _{res})	44
3.9. Total rate of heat storage in the body (S)	45
3.10. Condition for thermal comfort	45
3.11. The PMV-PPD model	48
3.12. TWO-NODE model	50
3.13. Secondary factors affecting comfort	53
3.14. Graphic Comfort Zone Method for Typical Indoor Environments	54
CHAPTER 4 MATHEMATICAL MODELING	56
4.1. Introduction	56

4.2. Fluid Element for Conservation Laws	57
4.3. Substantial derivative	57
4.4. Governing equations	59
4.4.1. Mass conservation	59
4.4.2. Momentum equation	60
4.4.3. Energy equation	63
4.5. Species transport equations	65
4.6. Turbulence and its Modeling	66
4.6.1. Reynolds Averaging Equation	67
4.6.2. Turbulence models	70
4.6.2.1. The Standard k–ε Model	71
4.6.2.2. The RNG k-ε model	72
4.6.2.3. The Realizable k-ε model	73
4.7. Buoyancy effects on turbulence in the k-ε models	75
4.8. Near wall treatment	76
4.9. Standard Wall Functions	78
CHAPTER 5 NUMERICAL INVESTIGATION	82
5.1. General	82
5.2. Model archaeological tomb of the King Horemheb KV57 (Structure)	82
5.3. Model of tomb KV57 for CFD simulation	84
5.4. Grid Generation and mesh criteria	85
5.5. Tomb KV57 model design	86
5.6. Boundary Conditions	88
5.7. Solution Algorithm	90
5.8. Pressure – Velocity coupling	91
5.9. Under-relaxation factors	92
CHAPTER 6 RESULTS AND DISCUSSION	93
6.1. General	93
6.2. Model Validation	93
6.3. Grid Independency Check	96
6.4. Horemheb (KV57)	98
6.4.1. Effecting the different number of grilles in ventilation design	98
6.4.1.1. General Flow Pattern	98
6.4.1.2. Thermal Patterns	105
6.4.1.3. Relative Humidity Patterns	106
6.4.1.4. PMV and PPD predictions	108
6.4.2. Effecting the number of visitors	110
6.4.2.1. General Flow Pattern	110
6.4.2.2. Thermal Patterns	112
6.4.2.3. Relative Humidity Patterns	116
6.4.2.4. PMV and PPD predictions	118
6.4.3. Effecting the outside air conditions	121
6.4.3.1. September outside conditions	121

6.4.3.2. October outside conditions	125
6.4.3.3. November outside conditions	129
6.4.3.4. December outside conditions	133
6.4.3.5. June outside conditions	137
6.4.3.6. July outside conditions	141
6.4.3.7. January outside conditions	145
6.4.4. Effecting the change of Air Change per Hour (ACH)	149
6.4.4.1. The effect of 4ACH in air flow pattern inside the tomb	149
6.4.4.2. The effect of 6ACH in air flow pattern inside the tomb	154
CHAPTER 7 CONCLUTION AND SUGGESTED FUTURE WORK	
7.1 Introduction	159
7.2 Conclusions of the present work	159
7.3 Recommendations for future work	160
REFRENCES	162
APPEDICES	168
Appendix A: Typical Metabolic Heat Generation & Clothing Parameters	168
Appendix B: Luxor, Egypt Weather Conditions	171
ملخص البحث	172

LIST OF TABLES

Table	Description	Page
1.1	Mold temperature and moisture relationship from ASHRAE	6
2.1	Summary of previous research work in enclosed spaces' numerical investigations.	10
3.1	Equations for Predicting Thermal Sensation Y of Men, Women, and	46
	Men and Women Combined	
4.1	Two equations k - ε Models	74
5.1	Under-Relaxation factors for different quantities corrections	92
6.1	KV57 tomb cases	98
6.2	The effect of different number of visitors in Relative Humidity	117

LIST OF FIGURES

Figure	Description	Page
1.1	Entrance and second corridor of the tomb KV57	2
1.2	Relative Humidity and Comfort, [2]	4
1.3	Effect of moisture content in the color of artifacts	4
1.4	Effect of pest infestation in the wall painting	6
2.1	Blum's space configurations, 1956[3]	9
2.2	Measured Axial Velocity, Hosni et al 1996[12]	10
2.3	Transient low-Reynolds number results [27]	14
2.4	Transient temperature stratification values [27]	14
2.5	Schematic drawing of the test room [28].	15
2.6	Comparison between simulations and measurements [28].	15
2.7	Calculated and measured non-dimensional temperature profiles	16
2.8	(o measurements; + predictions) [29]. Calculated and measured non-dimensional velocity profiles	16
2.9	(o measurements; + predictions) [29]. Reduced scale model parameters [30]	17
2.10	Non-dimensional velocity magnitude [30].	17
2.11	Non-dimensional velocity magnitude [30].	17
2.12	Non-dimensional velocity magnitude [30].	18
2.13	Non-dimensional velocity magnitude [30].	18
2.14	Velocity magnitude contours for a mid plane along the tomb axis, Case 5[31]	19
2.15	Turbulence kinetic energy distribution along the tomb axis for Case 6	20
2.16	[31]. Temperature contours for a mid plane along the tomb axis, Case 5 [31].	20
2.17	RH contours for a mid plane along the tomb axis, Case 5, [31].	21
2.18	Velocity magnitude contours for a mid plane along the tomb axis, Case 1 [31].	21
2.19	RH contours for a mid plane along the tomb axis, Case 1[31]	22
2.20	Velocity magnitude contours for transverse plane at $x = 18.5$ m, Case 2 [31]	23
2.21	Temperature contours for transverse plane at $x = 18.5$ m, Case 1 [31]	23

2.22	Temperature contours for mid plane, z=1.8 m, Case 1 [32].	25
2.23	Relative humidity Contours at walls, KV 1 Case 2 [32].	25
2.24	PMV contours for a mid plane at z=1.8 m, Case 1 [32].	26
2.25	PPD histogram for KV-1, Case 1 [32].	26
2.26	Temperature contours for a middle plane, Case 1 [32].	27
2.27	PMV contours for dissatisfied visitors, case1 [32].	27
2.28	Relative Humidity and scaled velocity against scaled position for KV 62 [32].	28
2.29	Relative humidity contours for transverse plane x=17 m, KV-62 Case1 [32].	28
2.30	PMV contours for a transverse plane x=17 m, KV62 case1 [32].	29
2.31	Air Velocity magnitudes along the tomb axis for case 1 [33].	30
2.32	Temperature contours for a mid plane along the tomb axis case 1 [33].	30
2.33	Turbulence kinetic energy contours for case 4 [33].	31
2.34	RH contours for a mid plane along the tomb axis case 2 [33].	31
2.35	Velocity magnitude contour for a mid plane along the tomb axis case 1	32
2.36	[33]. Velocity magnitude contour at x= 50m case 1 [33].	32
2.37	Temperature contours for a mid plane along the tomb axis case 2 [33].	33
2.38	RH contours for a mid plane along the tomb axis for case 1 [33].	33
3.1	Thermal Interaction of Human Body and Environment	38
3.2	ASHRAE Summer and Winter Comfort Zones	47
3.3	Predicted Percentage of Dissatisfied (PPD) as Function of Predicted Mean Vote (PMV)	49
3.4	Graphic Comfort Zone Method	55
4.1	Fluid element for conservation laws.	57
4.2	Stress components on the six faces of the fluid element	61
4.3	Typical velocity measurement in turbulent flow	67
4.4	Subdivisions of the Near-Wall Region, [72]	76
4.5	Near-wall treatment approach in FLUENT, [72]	77
5.1	KV57 isometric view, [73]	83
5.2	KV57 schematics axes one, [73]	83

5.3	KV57 schematics axes two, [73]	84
5.4a	Isometric view for the tomb model	87
5.4b	The location of grilles and visitors inside tomb KV57	87
5.5	Floor air outlet details.	88
5.6	Present Visitor modelling assumptions' details	88
5.7	Flowchart for the segregated solver algorithm [31].	91
6.1	Line 1 configuration [31]	93
6.2a	Velocity distribution along line 1	94
6.2b	Temperature distribution along line 1	94
6.2c	Relative Humidity distribution along line 1	95
6.3	Figure 6.3: RH contours on the tomb walls	95
6.4	PMV contours on the visitors inside tomb	95
6.5	Line configuration	96
6.6	Temperature distribution along line 1	97
6.7	Relative Humidity distribution along line 1	97
6.8	Temperature distribution along line 1	99
6.9	Relative Humidity distribution along line 1	99
6.10	Velocity magnitude contours for a mid plane along the tomb axis-1, Case KV57-1	100
6.11	Velocity magnitude contours for a mid plane along the tomb axis-2, Case KV57-1	100
6.12	Velocity magnitude contours for a mid plane along the tomb axis-1, Case KV57-2	101
6.13	Velocity magnitude contours for a mid plane along the tomb axis-2, Case KV57-2	101
6.14	Velocity magnitude contours for a mid plane along the tomb axis-1, Case KV57-3	102
6.15	Velocity magnitude contours for a mid plane along the tomb axis-2, Case KV57-3	102
6.16	Velocity magnitude contours for a mid plane along the tomb axis-1, Case KV57-4	103
6.17	Velocity magnitude contours for a mid plane along the tomb axis-2, Case KV57-4	103
6.18	Velocity vectors along mid plan axis-1 in sections C and D, Case KV57-4	104
6.19	Velocity vectors along mid plan axis-1 in section D and well chamber, Case KV57-4	104
6.20	Temperature contours for a mid plane along the tomb axis-1. Case KV57-4	105

6.21	Temperature contours for a mid plane along the tomb axis-2, Case KV57-4	105
6.22	RH contours for a mid plane along the tomb axis-1, Case KV57-1	106
6.23	RH contours for a mid plane along the tomb axis-2, Case KV57-1	106
6.24	RH contours for a mid plane along the tomb axis-2, Case KV57-2	107
6.25	RH contours for a mid plane along the tomb axis-2, Case KV57-3	107
6.26	RH contours for a mid plane along the tomb axis-2, Case KV57-4	108
6.27	PMV contours for a mid plane along the tomb axis-1, Case KV57-4	108
6.28	PMV contours for a mid plane along the tomb axis-2, Case KV57-4	109
6.29	PPD contours for a mid plane along the tomb axis-1, Case KV57-4	109
6.30	PPD contours for a mid plane along the tomb axis-2, Case KV57-4	110
6.31	Velocity magnitude contours for a mid plane along the tomb axis-1, Case	110
	KV57-5	
6.32	Velocity magnitude contours for a mid plane along the tomb axis-2, Case	111
	KV57-5	
6.33	Velocity magnitude contours for a mid plane along the tomb axis-1, Case	111
6.34	KV57-6 Velocity magnitude contours for a mid plane along the tomb axis-2, Case KV57-6	112
6.35	Temperature contours for a mid plane along the tomb axis-1, Case KV57-5	112
6.36	Temperature contours for a mid plane along the tomb axis-2, Case KV57-5	113
6.37	Temperature contours for a mid plane along the tomb axis-1, Case KV57-6	113
6.38	Temperature contours for a mid plane along the tomb axis-2, Case KV57-6	114
6.39	Temperature distribution for a vertical plane at $x = 3.5m$, Case KV57-6	114
6.40	Temperature distribution for a vertical plane at $x = 6.5$ m, Case KV57-6	115
6.41	Temperature distribution for a vertical plane at $x = 10m$, Case KV57-6	115
6.42	Temperature distribution for a vertical plane at $x = 18m$, Case KV57-6	115
6.43	RH contours for a mid plane along the tomb axis-1, Case KV57-5	116
6.44	RH contours for a mid plane along the tomb axis-2, Case KV57-5	116
6.45	RH contours for a mid plane along the tomb axis-2, Case KV57-6	117
6.46	PMV contours for a mid plane along the tomb axis-1, Case KV57-5	118
6.47	PMV contours for a mid plane along the tomb axis-1, Case KV57-6	118

6.48	PMV contours for a mid plane along the tomb axis-1, Case Kv3/-3	115
6.49	PMV contours for a mid plane along the tomb axis-1, Case KV57-6	119
6.50	PMV contours for a mid plane along the tomb axis-2, Case KV57-5	120
6.51	PMV contours for a mid plane along the tomb axis-2, Case KV57-6	120
6.52	Temperature contours for a mid plane along the tomb axis-1, Case KV57-9	121
6.53	Temperature contours for a mid plane along the tomb axis-2, Case KV57-9	121
6.54	RH contours for a mid plane along the tomb axis-1, Case KV57-9	122
6.55	RH contours for a mid plane along the tomb axis-2, Case KV57-9	122
6.56	PMV contours for a mid plane along the tomb axis-1, Case KV57-9	123
6.57	PMV contours for a mid plane along the tomb axis-2, Case KV57-9	123
6.58	PPD contours for a mid plane along the tomb axis-1, Case KV57-9	124
6.59	PPD contours for a mid plane along the tomb axis-2, Case KV57-9	124
6.60	Temperature contours for a mid plane along the tomb axis-1, Case KV57-10	125
6.61	Temperature contours for a mid plane along the tomb axis-2, Case KV57-10	125
6.62	RH contours for a mid plane along the tomb axis-1, Case KV57-10	126
6.63	RH contours for a mid plane along the tomb axis-2, Case KV57-10	126
6.64	PMV contours for a mid plane along the tomb axis-1, Case KV57-10	127
6.65	PMV contours for a mid plane along the tomb axis-2, Case KV57-10	127
6.66	PPD contours for a mid plane along the tomb axis-1, Case KV57-10	128
6.67	PPD contours for a mid plane along the tomb axis-2, Case KV57-10	128
6.68	Temperature contours for a mid plane along the tomb axis-1, Case KV57-11	129
6.69	Temperature contours for a mid plane along the tomb axis-2, Case KV57-11	129
6.70	RH contours for a mid plane along the tomb axis-1, Case KV57-11	130
6.71	RH contours for a mid plane along the tomb axis-2, Case KV57-11	130
6.72	PMV contours for a mid plane along the tomb axis-1, Case KV57-11	131
6.73	PMV contours for a mid plane along the tomb axis-2, Case KV57-11	131
6.74	PPD contours for a mid plane along the tomb axis-1, Case KV57-11	132
6.75	PPD contours for a mid plane along the tomb axis-2, Case KV57-11	132
6.76	Temperature contours for a mid plane along the tomb axis-1, Case KV57-12	133
6.77	Temperature contours for a mid plane along the tomb axis-2, Case KV57-12	133
6.78	RH contours for a mid plane along the tomb axis-1, Case KV57-12	134
6.79	RH contours for a mid plane along the tomb axis-2, Case KV57-12	134
6.80	PMV contours for a mid plane along the tomb axis-1, Case KV57-12	135

6.81	PMV contours for a mid plane along the tomb axis-2, Case KV57-12	135
6.82	PPD contours for a mid plane along the tomb axis-1, Case KV57-12	136
6.83	PPD contours for a mid plane along the tomb axis-2, Case KV57-12	136
6.84	Temperature contours for a mid plane along the tomb axis-1, Case KV57-13	137
6.85	Temperature contours for a mid plane along the tomb axis-2, Case KV57-13	137
6.86	RH contours for a mid plane along the tomb axis-1, Case KV57-13	138
6.87	RH contours for a mid plane along the tomb axis-2, Case KV57-13	138
6.88	PMV contours for a mid plane along the tomb axis-1, Case KV57-13	139
6.89	PMV contours for a mid plane along the tomb axis-2, Case KV57-13	139
6.90	PPD contours for a mid plane along the tomb axis-1, Case KV57-13	140
6.91	PPD contours for a mid plane along the tomb axis-2, Case KV57-13	140
6.92	Temperature contours for a mid plane along the tomb axis-1, Case KV57-14	141
6.93	Temperature contours for a mid plane along the tomb axis-2, Case KV57-14	141
6.94	RH contours for a mid plane along the tomb axis-1, Case KV57-14	142
6.95	RH contours for a mid plane along the tomb axis-2, Case KV57-14	142
6.96	PMV contours for a mid plane along the tomb axis-1, Case KV57-14	143
6.97	PMV contours for a mid plane along the tomb axis-2, Case KV57-14	143
6.98	PPD contours for a mid plane along the tomb axis-1, Case KV57-14	144
6.99	PPD contours for a mid plane along the tomb axis-2, Case KV57-14	144
6.100	Temperature contours for a mid plane along the tomb axis-1, Case KV57-15	145
6.101	Temperature contours for a mid plane along the tomb axis-2, Case KV57-15	145
6.102	RH contours for a mid plane along the tomb axis-1, Case KV57-15	146
6.103	RH contours for a mid plane along the tomb axis-2, Case KV57-15	146
6.104	PMV contours for a mid plane along the tomb axis-1, Case KV57-15	147
6.105	PMV contours for a mid plane along the tomb axis-2, Case KV57-15	147
6.106	PPD contours for a mid plane along the tomb axis-1, Case KV57-15	148
6.107	PPD contours for a mid plane along the tomb axis-2, Case KV57-15	148
6.108	Velocity magnitudes contours for a mid plane along the tomb axis-1, Case	149
	KV57-7	
6.109	Velocity magnitudes contours for a mid plane along the tomb axis-2, Case	149
	KV57-7	
6.110	Temperature contours for a mid plane along the tomb axis-1, Case KV57-7	150
6.111	Temperature contours for a mid plane along the tomb axis-2, Case KV57-7	150
6.112	RH contours for a mid plane along the tomb axis-1, Case KV57-7	151