

Preparation, Characterization, and Applications of Some Chitosan Derivatives

By

Reham Akram Abdel-monem Mohamed

B.Sc. (Chemistry) 2007

M.Sc. (Chemistry) 2013

A Thesis Submitted for the Ph.D. Degree in Chemistry

To
Chemistry Department
Faculty of Science
Ain Shams University
(2018)

Preparation, Characterization, and Applications of Some Chitosan Derivatives

Thesis submitted by

Reham Akram Abdel-monem Mohamed

B.Sc. (Chemistry) 2007

M.Sc. (Chemistry) 2013

Under the supervision of

Prof. Dr. Ahmed Ismail Hashem

Prof. of Organic Chemistry, Faculty of Science, Ain Shams University

Prof. Dr. Samira Taha Rabie

Photochemistry Department, National Research Centre

Late Prof. Dr. Afaf Ali Nada

Photochemistry Department, National Research Centre

Assoc. Prof. Dr Ahmed Mohamed Khalil Mohamed

Photochemistry Department, National Research Centre

Dr. Osama Mohamed Mostafa

Agricultural Microbiology Department, National Research Centre

 T_{Ω}

Department of Chemistry,
Faculty of Science, Ain Shams University
For Philosophy Doctor (Ph D) Chemistry
(2018)

Approval Sheet

Name of Candidate: Reham Akram Abdel-monem Mohamed

Degree: Ph.D. Chemistry

Thesis Title: Preparation, Characterization, and Applications of Some **Chitosan Derivatives** Thesis Supervisors Thesis approved 1- Prof. Dr. Ahmed Ismail Hashem Prof. of Organic Chemistry, Faculty of Science, Ain Shams University 2- Prof. Dr. Samira Taha Rabie Prof. of Organic Chemistry, Photochemistry Department, National Research Centre 3- Late Prof. Dr. Afaf Ali Nada Prof. of Organic Chemistry, Photochemistry Department, National Research Centre 4- Assoc. Prof. Dr. Ahmed Mohamed Khalil Mohamed **Assoc.** Prof. of Polymer Chemistry, Photochemistry Department, National Research Centre 5- Dr. Osama Mohammad Mostafa Resercher of Agricultural Microbiology, Agricultural Microbiology Department, National Research Centre

Approval
Prof. Dr. Ibrahim Housiny Badr
Chairman of Chemistry Department

Preparation, Characterization, and Applications of Some Chitosan Derivatives

By **Reham Akram Abdel-monem Mohamed**

B.Sc. (Chemistry) 2007

M.Sc. (Chemistry) 2013

Under the supervision of

Prof. Dr. Ahmed Ismail Hashem

Prof. of Organic Chemistry, Faculty of Science, Ain Shams University

Prof. Dr. Samira Taha Rabie

Photochemistry Department, National Research Centre

Late Prof. Dr. Afaf Ali Nada

Photochemistry Department, National Research Centre

Assoc. Prof. Dr. Ahmed Mohamed Khalil Mohamed

Photochemistry Department, National Research Centre

Dr. Osama Mohammad Mostafa

Agricultural Microbiology Department, National Research Centre

To

Department of Chemistry,
Faculty of Science, Ain Shams University
For Philosophy Doctor (Ph D) Chemistry
(2018)

Acknowledgement

Above all, praise to ALLAH, the Lord of the world, by whose grace this work has been completed and never leaving me during this stage.

My deep thanks also to **Prof. Dr. Ahmed Ismail Hashem**, Professor of Organic Chemistry, Faculty of Science, Ain Shams University for continuous guidance, support and kind advice over the whole duration of the study.

The author is also greatly indebted to **Prof. Dr. Samira Taha Rabie**, Professor of Organic Chemistry, Photochemistry Department, National Research Centre, for suggesting the problem, direct supervision, valuable and fruitful comments and discussions and kind help during the experimental work.

I express my sincere gratitude to **Associate Prof. Dr. Ahmed Mohamed Khalil,** Assoc.Prof. of Organic Chemistry, Photochemistry Department, National Research Centre, for his supervision, guidance and for his excellent supervision during the progress of this work.

Many thanks are also directed to **Dr Osama Mohammad Mostafa**, Agricultural Microbiology Department, National Research centre, and **Late Prof.Dr. Afaf Ali Nada**, Professor of Organic Chemistry, Photochemistry Department, National Research Centre.

Contents

Abstract	1
Summary	3
Chapter 1: Introduction	
1. Introduction.	13
1.1. Antimicrobial properties of chitosan	16
1.2. Industrial and biomedical applications of chitosan	17
1.3. Chemical modifications of chitosan.	18
1.3.1. Quaternized chitosan derivatives.	20
1.3.2. N-alkyl chitosan derivatives	20
1.3.3. Carboxy Alkyl chitosan derivatives	24
1.3.3.1. Synthesis of carboxymethyl chitosan.	24
1.3.3.2. Modifications of carboxymethyl chitosan	25
1.3.3.2.1. Modifications with acylation.	25
1.3.3.2.2. Modifications with alkylation.	26
1.3.3.2.3. Modification with grafting	27
1.3.3.2.4. CMCs nanocomposites.	28
1.3.4. Acyl Chitosan.	30
1.3.5. Thiolated chitosan derivatives.	32
1.3.6. Sulfated chitosan derivatives.	33
1.3.7. Phosphorylated chitosan derivatives	34
1.3.8. Chitosan nanoparticles	35
1.3.8.1. Synthesis of nano-chitosan and its characterization	35
1.3.8.2. Chitosan metal nanocomposites.	37
1.4. Applications of Chitosan and its derivatives	39
1.4.1. Pharmaceutical and Biomedical applications	40
1.4.1.1. Chemical modifications of chitosan for drug delivery	40

1.4.1.1.1. Quaternized Chitosan Derivatives	41
1.4.1.1.2. Thiolated chitosan.	43
1.4.1.1.3. Hydrophobic Modification.	44
1.4.1.1.4. Amphiphilic Chitosan Derivatives	47
1.4.1.1.5. Alkyl chains- grafted chitosan	48
1.4.1.1.6. Chitosan-Based Hydrogels	50
1.4.1.1.7. Chitosan nanomaterials	50
1.4.1.2. Chemical modifications of chitosan for tissue engineering	52
1.4.1.3. Chemical modifications of chitosan for cosmetics	54
1.4.2. Biological applications	55
1.4.2.1. Antimicrobial activities	56
1.4.2.2. Antioxidant activity	61
1.4.2.3. Antitumour activity	62
1.4.2.4. Anti-inflammatory activity	66
Chapter 2: Materials and Experimental techniques	
2.1. Materials	69
2.2. Instrumentations and Experimental Techniques	69
2.2.1. FTIR spectroscopy.	69
2.2.2. Scanning electronic microscopy	69
2.2.3. Transmission electron microscopy	70
2.2.4. Thermogravimetric analysis	70
2.3. Methods of Preparation and Characterization of modified Cs/CM	1Cs70
2.3.1. Preparation of Carboxymethyl chitosan (CMCs)	70
2.4. Preparation of Cs and CMCs-Schiff-base	71
2.4.1. Preparation of pyrazolo-aldehyde derivatives	71
2.4.1.1. Preparation of hydrazine derivatives	71
2.4.1.2. Preparation of pyrazole-aldehyde derivatives	71

2.4.2. Preparation of Cs and CMCs/ Schiff-base loaded with	
silver nanoparticles	3
2. 5. Antimicrobial activity74	4
2. 5.1. Pathogenic strains.	4
2.5.2. Determination of minimum inhibition concentration (MIC)75	5
2. 6. Determination of water uptake of Chitosan derivatives	6
2.4.3. Carboxylic acids chemical modifications of chitosan and	
carboxymethyl chitosan8	1
2.4.3.1. Synthesis of chitosan and carboxymethyl chitosan amide	
derivatives loaded with silver nanoparticles	1
Chapter 3: Results and Discussion	
3.1. Chitosan and carboxymethyl chitosan/Schiff-base8	36
3.1.1. Preparation and characterization of Cs(CMCs)/pyrazole-	
Schiff-base loaded with silver nanoparticles	36
3.1.1.1. Fourier transforms infrared of Cs(CMCs)/pyrazole	
Schiff-base derivatives8	37
3.1.1.2. Scanning electron microscopy (SEM)	90
3. 1.1.3. Transmission electron microscopy (TEM)9) 2
3.1.1.4. Thermogravimetric analysis (TGA)	95
3.1.1.5. Antimicrobial activities of Cs(CMCs)/pyrazole-	
Schiff-base/AgNPs9	96
3.1.1.6. Antimicrobial activities of Cs/pyrazole-Schiff-base/AgNPs) 6
3.1.1.7. Antimicrobial activities of pyrazole/CMCs-Schiff-base/AgNPS10)1
3.1.1.8. Determination of minimum inhibitory concentration (MIC)10)4
3.1.1.9. Water uptake of Cs (CMCs)-pyrazole/Schiff-base-AgNPs10)6
3.1.2. Cs(CMCs)/Schiff-base from condensation with furan-3-	
carbaldehyde and thiophene-3- carbaldehyde loaded with AgNPs107	7

3.1.2.1. FT-IR of Heterocyclic aldehydes-Cs(CMCs)/Schiff-base	.108
3.1.2.2. Antimicrobial activities of furan-3-carbaldehyde and	
thiophene-3- carbaldehyde loaded with AgNPs	109
3.1.3. Preparation of Cs and CMCs-aromatic Schiff-bases loaded	
With AgNPs	111
3.1.3.1. FTIR spectra of Cs (CMCs)/aromatic Schiff-base derivatives	112
3.1.3.2. Scanning Electron Microscopy (SEM)	115
3.1.3.3. Transmission Electron Microscopy (TEM)	116
3.1.3.4. Thermogravimetric Analysis (TGA)	117
3.1.3.5. Antimicrobial activities of Cs and CMCs-aromatic	
Schiff-base-AgNPs.	119
3.1.3.6. Determination of minimum inhibitory concentration (MIC)	121
3.1.3.7. Water uptake of Cs-aromatic Schiff-base/AgNPs	122
3.1.3.8. Antimicrobial activities of CMCs-aromatic Schiff-base/AgNPs	124
3.1.3.9. Determination of minimum inhibitory concentration (MIC)	127
3.1.3.10. Water uptake of CMCs/aromatic Schiff-base/AgNPs	128
3.1.4. Preparation of Cs and CMCs/aliphatic Schiff-base/AgNPs	130
3.1.4.1. FTIR spectra of Cs/aliphatic Schiff-base derivatives	130
3.1.4.2. Antimicrobial activity of Cs/aliphatic Schiff base loaded	
with AgNPs	130
3.1.4.3. Antimicrobial activity of CMCs/aliphatic Schiff base loaded	
with AgNPs	132
3.1.4.4. Water uptake of Cs(CMCs)-aliphatic Schiff-base/AgNPs	134
3.2. Carboxylic acids chemical modifications of chitosan	
and carboxymethyl chitosan loaded with AgNPs	135
3.2.1. Aliphatic unsaturated carboxylic acids/Cs (CMCs) amides/	
AgNPs	.136

3.2.1.1. FT-IR spectra of aliphatic unsaturated carboxylic	
acid/Cs(CMCs) amides	.137
3.2.1.2. Scanning Electron Microscopy (SEM) of Oleoylchitosan	
(Maleoyl) derivative	.138
3.2.1.3. Transmission Electron Microscopy (TEM) of Oleoylchitosan	
(Maleoyl) derivative	. 139
3.2.1.4. Thermogravimetric analysis	140
3.2.1.5. Antimicrobial activities of aliphatic unsaturated	
acids/Cs(CMCs) amides/AgNPs	. 141
3.2.1.6. Determination of minimum inhibitory concentration (MIC)	145
3.2.1.7. Water uptake of aliphatic unsaturated acids/Cs (CMCs)	
amides/AgNPs	. 146
3.2.2. Aliphatic saturated carboxylic acid/Cs (CMCs)	
amides/AgNPs	147
3.2.2.1. FTIR of Aliphatic saturated carboxylic acid/Cs(CMCs) amides	.148
3.2.2.2. Scanning and Transmission Electron Microscopy of	
GA/Cs amides	150
3.2.2.3. Antimicrobial activities of thioglycollic and glutaric acids	
/Cs(CMCs) amides/AgNPs	151
3.2.2.4. Determination of minimum inhibitory concentration (MIC)	154
3.2.2.5. Water uptake of aliphatic saturated acids/Cs(CMCs)	
amides/AgNPs	.155
3.2.3. Aromatic carboxylic acid/Cs(CMCs) amides/AgNPs	156
3.2.3.1. FT-IR of aromatic carboxylic acid/Cs (CMCs) amides	157
3.2.3.2. Scanning and Transmission Electron Microscopy of CA/Cs	
and SA/Cs amides	.158
3.2.3.3. Antimicrobial activities of aromatic carboxylic acids/	