

Ain Shams University Faculty of Science Geology Department

Structural Analysis of the Rosetta Fault, Offshore Nile Delta, Egypt

A Thesis Submitted to

Ain Shams University, Faculty of Science, Geology Department

In Partial Fulfilment of the Requirements for the Degree of Master of Science in

Geology

By

Basem Khalaf Sayed Abd El-Fattah

B.Sc. (Hons.) in Geology, Ain Shams University

Supervised by

Prof. Dr. Adel Ramadan Moustafa

Dr. Mohamed Yousef Rizk

Professor of Structural Geology Faculty of Science Ain Shams University Lecturer of Geology Faculty of Science Ain Shams University

Geology Department
Faculty of Science
Ain Shams University
Cairo – 2018

<u>Note</u>

The present thesis is submitted to faculty of Science, Ain Shams University in partial

fulfillment for the requirements of the Master degree of Science in Geology. Besides the

research work materialized in this thesis, the candidate has attended five post-graduate

courses of ten subjects for one year as follows:

1. Geol 601: Field Geology and Statistical Geology

2. Geol 613: Sedimentary Petrology and Sedimentation

3. Geol 624: Advanced Structural Geology and Geotectonics

4. Geol 628: Advanced Lithostratigraphy and Biostratigraphy

5. Geol 631: Micropaleontology/Micropaleontology and Paleoecology

He successfully passed the final examinations in these courses held in September 2008.

In fulfillment of the language requirement of the degree, he also passed the final

examination of a course in the English language.

Student Name: Basem Khalaf Sayed Abd El-Fattah

Prof. Ali Farrag Osman

Chairman of Geology Department

ACKNOWLEDGMENTS

After thanks to Allah, I would like to express my deep gratitude to **Professor Adel** Ramadan Moustafa (Geology Department, Faculty of Science, Ain Shams University) and **Dr. Mohamed Yousef** (Geology Department, Faculty of Science, Ain Shams University), my research supervisors, for their patient guidance, enthusiastic encouragement and useful critiques of this research work. I would like to thank **Rashid Petroleum Company** and **the Egyptian General Petroleum Corporation** (EGPC) for providing the data used in this study. Special thanks to **Midland Valley Company** for providing MoveTM software to Ain Shams University for academic use and this is highly appreciated way to support the academic research. At last but not least, I would like to thank my family for their understanding, patience and endless support specially **my wife** who helped in typing and reviewing it. Thank you **my wife and my daughter** knowing you are a great pleasure for me.

Structural Analysis of the Rosetta Fault, Offshore Nile Delta, Egypt

ABSTRACT

Rosetta fault is a major fault system affecting the offshore West Nile Delta basin. It consists of series of NE-SW and N-S fault segments and had a very complicated history of deformation. It is deep seated fault system that played a great role in the deposition and in the petroleum system of the area either as an element of hydrocarbon charge (migration pathway) and trapping or as element of failure of some traps due to its reactivation (multistage deformation). Rosetta fault system began its activity in Mesozoic time and continued till recent times. It shows different deformation styles since the Eocene till now. This study throws light on the deformation history of Rosetta Fault System and its control of the evolution of the west Nile Delta basin and hydrocarbon exploration in the area. Integration of detailed seismic interpretation of ten stratigraphic surfaces starting from Eocene to Pleistocene (Recent) and structural restoration of two seismic sections reveals the complex deformation history of Rosetta fault starting as a reverse fault at deeper stratigraphic levels (Eocene to Tortonian) due to compression then affected by Messinian unconformity. The Messinian section is affected by remarkable NNW-SSE normal faults forming rotated fault blocks due to gravitational movement at that time. Following that Rosetta fault has become an extensional normal fault indicating negative structural inversion since the Eocene time. There are gas escaping features (mud volcanoes and gas chimneys) created through complex deformation history of the study area leading to hydrocarbon trap failure on deep stratigraphic sections.

CONTENTS

ACKNOWLEDGMENTS	i
ABSTRACT	ii
CONTENTS	iii
LIST OF FIGURES	v
LIST OF TABLES	xii
LIST OF ABBREVIATIONS	xiii
Chapter I	1
Introduction	1
1.1. Location of the Study Area	
1.2. Aim of the Study	2
1.3. Available Data	3
1.3.1. Seismic Data	3
1.3.2. Well Data	4
1.4. Methodology and Workflow	4
1.5. Exploration History	6
1.6. Previous work of the Nile Delta	7
1.7. Regional Geological Setting	8
1.7.1. Structural Setting	8
1.7.2. Plate Tectonic Setting	11
Chapter II	17
 Stratigraphy	17
2.1. Introduction	
2.2. Stratigraphic Framework of the	Nile Delta
2.2.1. Pre-Miocene Stratigraphy.	
2.2.2. Miocene Stratigraphy	
2.2.3. Pliocene Stratigraphy	23

2.3.	Borehole Data and Stratigraphic Column of the Study Area	30
2.3	3.1. Well Data	30
2.3	3.2. Stratigraphic Section of the study area	42
Chapte	er III	45
Seismi	c Structural Interpretation	45
3.1.	Introduction	45
3.2.	Workflow and Methodology	46
Chapte	er IV	80
Structi	ural Restoration	80
4.1	Introduction	80
4.2	Rules and Assumptions while Balancing.	84
4.3	Structural Restoration Workflow	96
4.3	3.1 Input data	96
4.3	3.2 Results	98
Chapte	er V	120
Gas Es	scaping Features (Mud Volcanoes and Gas Chimneys)	120
5.1	Introduction	120
5.2	Characteristics of gas chimneys	121
5.3	Origin of gas chimneys and mud volcanoes	122
5.4	Gas Escaping Features Interpretation Workflow	128
5.5	Interpretation and Discussion	128
Chapte	er VI	139
Structi	ural Modeling	139
6.1.	Introduction and workflow	139
6.2.	Results	144
Chapte	er VII	148
Summa	ary and Conclusions	148
Refere	nces	154

LIST OF FIGURES

Figure 1.1: Satellite image of the Nile Delta showing the location of the study area 1
Figure 1.2: Base map of the study area showing the wells location
Figure 1.3: Base map of the study area showing the different seismic cubes used for
preparing the megamerge cube
Figure 1.4: Base map showing well location in area of study and surrounding areas 7
Figure 1.5: Tectonic regions of the Nile Delta
Figure 1.6: Tethyan Ocean map and microplates reconstruction
Figure 1.7: Plate reconstruction at 240 Ma (Middle Triassic)
Figure 1.8: Map of the basement fabric in the eastern Mediterranean area
Figure 1.9: Plate reconstruction at 105 Ma (Early Cretaceous)
Figure 1.10: Plate reconstruction at 50 Ma (Eocene)
Figure 1.11: Plate reconstruction at 35 Ma (Onset of Nile Delta)
Figure 1.12: Plate reconstruction at 20 Ma (Miocene)
Figure 2.1: Present-day sea floor bathymetry of the Nile Delta
Figure 2.2: Generalized stratigraphic column of the Nile Delta showing the main
hydrocarbon occurrences, seal, reservoir and source rocks (after EGPC, 1994) 21
Figure 2.3: Messinian depositional model. 24
Figure 2.4: Pliocene depositional model
Figure 2.5: Oligocene-Early Miocene NW-SE oriented faults controlled the course of the
Nile and deposition of the Faiyum Delta
Figure 2.6: Delta systems development from Oligocene to Recent
Figure 2.7: Memphis-1 well stratigraphic column
Figure 2.8: Mina-1 well stratigraphic column
Figure 2.9: Mars-1 well stratigraphic column
Figure 2.10: Composite stratigraphic column of the study area (Not to scale) 44
Figure 3.1: Composite stratigraphic column of the study area showing the seismically
mapped horizons. 48

Figure 3.2: Seismic section tied with study wells using checkshot data showing ten mapped surfaces	49
Figure 3.3: First scenario of velocity model.	50
Figure 3.4: Second scenario of velocity model	50
Figure 3.5: Third scenario of velocity model	51
Figure 3.6: Simple grid using time mapped horizons.	51
Figure 3.7: Resampled average velocity maps into 3D simple grid	52
Figure 3.8: Resampled average velocity cube into 3D grid (area of single value has a	no
data)	52
Figure 3.9: Extrapolated average velocity cube (area of single value has no data)	53
Figure 3.10: 3D property defines area has velocity data with red color	53
Figure 3.11: 3D property shows area with velocity data (Variably colored)	54
Figure 3.12: 3D average velocity property (areas with data only and others are undefined	d).
	54
Figure 3.13: Extrapolated 3D average velocity cube which is used in depth conversion.	55
Figure 3.14: Top Eocene depth-structure contour map showing the locations of two seism	nic
sections used in the quality check of depth conversion.	56
Figure 3.15: Section-1 in time domain.	56
Figure 3.16: Section-1 in depth domain (the first scenario of velocity model)	57
Figure 3.17: Section-1 in depth domain (the second scenario of velocity model)	57
Figure 3.18: Section-1 in depth domain (the third scenario of velocity model)	58
Figure 3.19: Section-1 in depth domain (the fourth scenario of velocity model)	58
Figure 3.20: Section-2 in time domain.	59
Figure 3.21: Section-2 in depth domain (the first scenario of velocity model)	59
Figure 3.22: Section-2 in depth domain (the second scenario of velocity model)	60
Figure 3.23: Section-2 in depth domain (the third scenario of velocity model)	60
Figure 3.24: Section-2 in depth domain (the fourth scenario of velocity model)	61
Figure 3.25: Depth-structural map of the Sea bed (Top Bilqas/Mit Ghamr Formation)	64
Figure 3.26: Depth-structural map of the Sea bed (Top Bilqas/Mit Ghamr Formation) wi	ith
overlaid variance map (Egypt red belt projection)	65

Figure 3.27: Zoomed variance map of the Sea bed showing gravity movement and m	ass
wasting.	. 66
Figure 3.28: Zoomed variance map of the Sea bed showing gas escaping features	. 66
Figure 3.29: Intra-Wastani depth-structural map.	. 67
Figure 3.30: Intra-Kafr El Sheikh depth-structural map.	. 68
Figure 3.31: Top Abu-Madi depth-structural map	. 69
Figure 3.32: Top Messinian depth-structural map.	. 70
Figure 3.33: Base Messinian depth-structural map	. 71
Figure 3.34: Near Top Serravalian depth-structural map.	. 72
Figure 3.35: Intra-Qantara Formation depth-structural map	. 73
Figure 3.36: Intra-Oligocene depth-structural map.	. 74
Figure 3.37: Top Eocene depth-structural map	. 75
Figure 3.38: Section-1 (NW-SE seismic cross section in time domain)	. 76
Figure 3.39: Section-2 (WNW-ESE seismic cross section in time domain)	. 77
Figure 3.40: Section-3 (NW-SE seismic cross section in time domain)	. 78
Figure 3.41: Section-4 (NW-SE seismic cross section in time domain)	. 78
Figure 3.42: Section-5 (NNW-SE seismic cross section in time domain)	. 79
Figure 4.1: Removal of fault displacement via translation modified	. 81
Figure 4.2: Restoration of section via rotation then translation.	. 82
Figure 4.3: Restoration of section via translation then rotation.	. 83
Figure 4.4: Restoration of section (ductile rocks) via translation then rotation	. 83
Figure 4.5: Map view of Gulfaks field showing idea of plane strain.	. 85
Figure 4.6: Constant bed length before and after restoration	. 86
Figure 4.7: Restoration of a fault-bend fold as an example of constant bed thickness an	ıd
constant area	. 88
Figure 4.8: An Example of restoration following constant area.	. 89
Figure 4.9: Forward modeling explains vertical shear.	. 89
Figure 4.10: Forward modeling explains antithetic shear.	. 90
Figure 4.11: Forward modeling explains synthetic shear.	. 90

Figure 4.12: Fault-propagation folds as an example of trishear (reverse fault)	92
Figure 4.13: Fault-propagation folds as an example of trishear (normal fault)	93
Figure 4.14: Trishear model vs Kink-fold model.	94
Figure 4.15: Map restoration (deformed state).	94
Figure 4.16: Map restoration (undeformed state): restoration of the top Statfjord	
Formation of the North Sea Gulfaks field	95
Figure 4.17: Eocene depth structural map showing the locations of two seismic sections	ions
used for restoration.	96
Figure 4.18: 2D structure restoration workflow.	97
Figure 4.19: Fully Interpreted seismic section in time domain	100
Figure 4.20: Fully Interpreted depth-converted seismic section	100
Figure 4.21: Decompaction of the Bilqas Mit-Ghamr Formation	101
Figure 4.22: Restoration of the Rosetta fault at Intra-Wastani surface	101
Figure 4.23: Decompaction and restoration to Intra-Wastani surface	102
Figure 4.24: Decompaction of El Wastani Formation.	102
Figure 4.25: Restoration of the Rosetta Fault at Intra Kafr El Sheikh surface	103
Figure 4.26: Restoration to Intra Kafr El Sheikh surface (restore to datum)	103
Figure 4.27: Decompaction of Kafr El Sheikh Formation	104
Figure 4.28: Decompaction and restoration to top Abu Madi surface	104
Figure 4.29: Decompaction of Abu Madi Formation.	105
Figure 4.30: Decompaction of Qwassim Formation (Tortonian section)	105
Figure 4.31: Restoring the eroded Part of Serravalian section	106
Figure 4.32: Restoration of the Rosetta Fault at near top Serravalian surface	106
Figure 4.33: Restoration to Near Top Serravalian-Unfolding	107
Figure 4.34: Decompaction of Serravalian section	107
Figure 4.35: Decompaction and restoration to Intra-Qantara surface	108
Figure 4.36: Decompaction of Qantara Formation.	108
Figure 4.37: Decompaction and restoration to Intra-Oligocene surface	108
Figure 4.38: Fully Interpreted seismic section in time domain.	110

Figure 4.39: Fully interpreted depth converted seismic section.	111
Figure 4.40: Decompaction of Sea layer	111
Figure 4.41: Decompaction of Bilqas Mit-Ghamr Formation.	112
Figure 4.42: Restoration of the Rosetta Fault at Intra-Wastani surface	112
Figure 4.43: Decompaction and restoration to Intra-Wastani surface	113
Figure 4.44: Decompaction of El Wastani Formation.	113
Figure 4.45: Restoration of the Rosetta Fault at Intra-Kafr El Sheikh surface	114
Figure 4.46: Decompaction and restoration to Intra-Kafr El Sheikh surface	114
Figure 4.47: Decompaction of Kafr El Sheikh Formation	115
Figure 4.48: Restoration of the Rosetta Fault at Top Abu Madi surface	115
Figure 4.49: Decompaction and restoration to Top Abu Madi surface	116
Figure 4.50: Decompaction of Abu Madi Formation.	116
Figure 4.51: Decompaction of Messinian section (Rosetta Formation)	117
Figure 4.52: Decompaction of Qwassim Formation (Tortonian Section)	117
Figure 4.53: Decompaction and restoration to near Top Serravalian surface	118
Figure 4.54: Decompaction of Serravalian section	118
Figure 4.55: Restoration of the Rosetta fault to Intra-Qantara surface	118
Figure 4.56: Decompaction and restoration to Intra-Qantara surface	119
Figure 4.57: Decompaction of Qantara Formation.	119
Figure 4.58: Restoration of the Rosetta Fault at Intra-Oligocene surface	119
Figure 4.59: Decompaction and restoration to Intra-Oligocene surface	119
Figure 5.1: a) P-wave seismic section (showing the gas chimney as low amplitude	
anomaly).b) S-wave seismic section.	
Source:http://www.glossary.oilfield.slb.com/DisplayImage.cfm?ID=240	121
Figure 5.2: Map showing hydrate-bearing sediments sites, which often are associated	l with
mud volcano activity	124
Figure 5.3: Distribution map of mud cones, gas chimneys and pockmarks in the Nile	Delta
(Loncke et al., 2004)	125
Figure 5.4: Time-structural contour map of the Sea bed.	129
Figure 5.5: Depth-structural contour map of the Seabed.	130

Figure 5.6: Depth-structural contour map of the Sea bed overlain with extracted value from
variance cube130
Figure 5.7: Uninterpreted E-W seismic section passing through the gas escaping features.
Figure 5.8: Interpreted E-W seismic section passing through the gas escaping features with
interpretation. 131
Figure 5.9: E-W seismic section passing through the gas escaping features with
interpretation and chimney geobodies
Figure 5.10: E-W seismic section passing through the gas escaping features on variance
cube
Figure 5.11: E-W seismic section passing through the gas escaping features and chimney
geobodies on variance cube
Figure 5.12: Close-up view of the E-W seismic section at the gas escaping features 133
Figure 5.13: Close-up view E-W seismic section on Variance cube at the gas escaping
features
Figure 5.14: 3D perspective view showing the depth-structural contour map of the Eocene
Limestone with the chimney geobodies
Figure 5.15: 3D perspective view showing the depth-structural contour map of the Intra-
Oligocene with the chimney geobodies
Figure 5.16: 3D perspective view showing the depth-structural contour map of the Intra-
Qantara with the chimney geobodies
Figure 5.17: 3D perspective view showing the depth-structural contour map of the near top
Serravalian with the chimney geobodies
Figure 5.18: 3D perspective view showing the depth-structural contour map of the base
Messinian with the chimney geobodies
Figure 5.19: 3D perspective view showing the depth-structural contour map of the top
Messinian with the chimney geobodies
Figure 5.20: 3D perspective view showing the depth-structural contour map of the Intra-
Kafr El Sheikh with the chimney geobodies

Figure 5.21: 3D perspective view showing the depth-structural contour map of the Intra-
Wastani with the chimney geobodies
Figure 5.22: 3D perspective view showing the depth-structural contour map of the Sea bed
with the chimney geobodies
Figure 6.1: An example of subsurface structure model using Petrel Structure framework.
Figure 6.2: Structure modeling workflow (Structure framework)
Figure 6.3: All types of fault truncations.
Figure 6.4: model showing the horizon types and their own resulted sequences 143
Figure 6.5: An example of effect of distance to fault
Figure 6.6: 3D structural model of the study area
Figure 6.7: NW-SE 2D sections (section-1 and section-3) in depth domain
Figure 6.8: 3D structural model top view at each stratigraphic level. a) Intra-Wastani, b)
Intra Kafr El-Sheikh, c) Top Abu Madi, d) Near Top Serravalian, e) Intra Qantara, and f)
Intra-Oligocene. 147

LIST OF TABLES

Table 1.1: General well information.	4
Table 2.1: Full description of the Nile Delta Stratigraphy (after Abd El Hamed, 2004)	. 27
Table 2.2: Memphis-1 well information.	. 31
Table 2.3: Memphis-1 well Formation tops and thicknesses	. 33
Table 2.4: Mina-1 well Formation tops and thicknesses.	. 35
Table 2.5: Mina-1 well information.	. 36
Table 2.6: Mars-1 well Formation tops and thicknesses	. 39
Table 2.7: Mars-1 well information.	. 40

LIST OF ABBREVIATIONS

CMR Combined Magnetic Resonance (logging tool)

EMW Equivalent Mud weight

ft feet

HCPV Hydrocarbon Pore Volume

K Permeability Km Kilometer

Km² Square Kilometer

m meter

MD Measured Depth

MDT Modular Dynamic Tester

MSL Mean Sea Level

NDOA Nile Delta Offshore Anticline

NN Nanno Plankton

 ϕ_0 Initial porosity at time of deposition

ppg pound per gallon

PSI Pound Per square Inch

SW Water Saturation TD Total Depth

TDR Time Depth Relationship
TVDSS Total Vertical Depth Sub Sea

V_{int} Interval Velocity VM Velocity Model

V_o Interval Velocity at time of deposition

WDDM West Delta Deep Marine