

Recent advances in the critical care management of ischemic stroke, role of recombinant tissue plasmiogen activator when to use and when not to use

Essay

Submitted for fulfillment of Master Degree in Intensive Care Medicine

Bγ **Ibrahim Abd Allah El-Sayed Atiya** *M.B.B.Ch*

Supervised by

Prof. Dr. Mohamed Sidky Mahmoud

Professor of Anesthesia and Intensive Care Medicine Faculty of Medicine – Ain Shams University

Dr. Aktham Adel Shokry

Assistant professor of Anesthesia and Intensive Care Medicine Faculty of Medicine – Ain Shams University

Dr. Wael Sayed Ahmed Abdel Ghaffar

Lecturer of Anesthesia and Intensive Care Medicine Faculty of Medicine –Ain Shams University

> Ain Shams University Faculty of Medicine

Acknowledgment

First and foremost I thank **ALLAH** for giving me the strength and will to accomplish this work.

I would like to express my deepest gratitude and profound appreciation to Prof. Dr. Mohamed Sidky Mahmoud, Professor of Anesthesia and Intensive Care Medicine, Faculty of Medicine – Ain Shams University, for his meticulous observation, his sincere guidance, his support and patience despite his multitude of tasks and burden.

I would like as well to thank Dr. Aktham Adel Shokry, Assistant professor of Anesthesia and Intensive Care Medicine, Faculty of Medicine – Ain Shams University, for his supervision of this work, his outstanding help step by step and for his constant encouragement and support.

My gratitude and respect as well to Dr. Wael Sayed Ahmed Abdel Ghaffar, Lecturer of Anesthesia and Intensive Care Medicine, Faculty of Medicine –Ain Shams University, for his endless patience, fruitful advice and supervision throughout the period of this study.

Last but not least, I thank my **family** for their support, endurance and encouragement.

List of Contents

Title	Page No.
List of Abbro	eviationsi
List of Table	siii
List of Figure	esiv
Introduction	1
Aim of the W	Vork3
Chapter (1):	Pathophysiology of ischaemic Stroke4
Chapter (2):	Use of thrombolytic therapy in acute stroke
Chapter (3):	Guidelines for use of recombinant tissue plasminogen activator
Summary	95
References	97
Arabic Sumr	nary—

List of Abbreviations

Abbr. Full-term

ACA : Anterior cerebral artery

ADC : Apparent diffusion coefficient

AHA : American Heart Association

AIS : Acute Ischemic Stroke

AMI : Acute Myocardial Infarction

APSAC : Anisoylated purified streptokinase activator complex

aPTT : Activated partial Thromboplastin time

ATP : Adenosine triphosphateCT : Computed tomographyDVT : Deep Vein Thrombosis

DWI : Diffusion-weighted imaging

ECASS : European Cooperative Acute Stroke Study

ECT : Ecarin clotting time

ED : Emergency departmentEIC : Early ischemic changes

FDA : Food and Drug Administration

FLAIR : Fluid-attenuated inversion recovery

GdnBzoNph: Guanidino benzoate

GISSI : Gruppo Italiano per la Sperimentazione della

Streptochinasi nell'Infarto Miocardico

GP : Glycoprotein

ICA : Internal carotid artery

INR : International neutralization ratio

IV : Intravenous

M5 : Mutant of prourokinase

MCA : Middle cerebral arteryMI : Myocardial infarction

MRI : Magnetic resonance imaging

NCCT : Non contrast CT

NIHSS : National Institutes of Health Stroke Scale

NINDS : Neurologic Disorders and Stroke

NMDA : *N*-methyl-D-aspartate
OACs : Oral anticoagulants

PCA : Posterior cerebral artery
PE : Pulmonary embolism
PI : Prescribing information

r-PA : Recombinant plasminogen activator

rpro-UK : Recombinant pro-urokinaseSAH : Subarachnoid hemorrhage

SCD : Sickle cell disease

sICH : Symptomatic intra-cerebral hemorrhage

STEMI : ST myocardial infarction **TIA** : Transient ischemic attack

TNK : Tenecteplase

tPA : Tissue plasminogen activator

TT : Thrombin time

WHO: World Health Organization

List of Tables

Table No	o. Title	Page No.
Table (1):	Vascular Supply to the Brain	7
Table (2):	National Institutes of Health Stroke	Scale 27
Table (3):	Applying Classification of Recomme and Level of Evidence	
Table (4):	Comparison of AHA/ASA Acute Management Guidelines and Previ New FDA Prescribing Informat Alteplase (Activase) Treatment in Ischemic Stroke	ous and ion for n Acute
	ibelicino buone	

List of Figures

. Title Pag	e No.
Brain – Midsagittal view	5
The four lobes of cerebrum	6
The middle cerebral artery	8
Frontal projection from a right vertebrartery angiogram illustrates the posteri circulation.	or
Frontal view of a cerebral angiogra with selective injection of the left intern carotid artery (ICA) illustrates that anterior circulation	al he
Middle cerebral artery (MCA) infarction	n 17
Vascular distributions: Anterior cerebrartery (ACA) infarction	
Vascular distributions: Posterior cerebratery (PCA) infarction	
Axial noncontrast computed tomograph (CT) scan demonstrates a focal area hypodensity in the left posterior limb the internal capsule	of of
Sources of cardioembolic stroke	22
Cardioembolic stroke	23
Magnetic resonance imaging (MRI) sca	n 24
	Brain – Midsagittal view

Introduction

ccording to the World Health Organization (WHO), 15 million people suffer stroke worldwide each year. Of these, 5 million die, and another 5 million are left permanently disabled (Mackay and Mensah, 1995).

Between 2012 and 2030, total direct medical strokerelated costs are projected to increase to 184.1 billion \$, with the majority of the projected increase in costs arising from those 65 to 79 years of age (Ovbiagele et al., 2013).

Fibrinolytics (ie, rt-PA) restore cerebral blood flow in some patients with acute ischemic stroke and may lead to improvement or resolution of neurologic deficits. Unfortunately, fibrinolytics may also cause symptomatic intracranial hemorrhage. Other complications include potentially hemodynamically significant hemorrhage and angioedema or allergic reactions. Therefore, if the patient is a candidate for fibrinolytic therapy, a thorough review of the inclusion and exclusion criteria must be performed. The exclusion criteria largely focus on identifying risk of hemorrhagic complications associated with fibrinolytic use (Adams et al., 2007).

An rt-PA stroke study group from the National Institute of Neurologic Disorders and Stroke (NINDS) first reported that the early administration of rt-PA benefited carefully selected patients with acute ischemic stroke. The FDA subsequently approved the use of rt-PA in patients who

met NINDS criteria. In particular, rt-PA had to be given within 3 hours of stroke onset and only after CT scanning had ruled out hemorrhagic stroke (National Institute of Neurological Disorders and Stroke, 1995).

Subsequently, fibrinolytic therapy administered 3-4.5 hours after symptom onset was found to improve neurologic outcomes in the European Cooperative Acute Stroke Study III (ECASS III), suggesting a wider time window for fibrinolysis (Hacke et al., 2008).

On the basis of these and other data, in May 2009 the AHA/ASA revised the guidelines for the administration of rt-PA after acute stroke, expanding the window of treatment from 3 hours to 4.5 hours to provide more patients with an opportunity to benefit from this therapy (Wahlgren et al., 2008), (Jauch et al., 2013).

Researchers found that administration of alteplase within 4.5 hours of stroke onset significantly improved outcomes, irrespective of age or stroke severity, with earlier treatment providing the greatest benefit. The odds of a good stroke outcome were 75% higher for patients who received alteplase within 3 hours of symptom onset compared with those who did not. Patients given alteplase 3 to 4.5 hours after symptom onset had a 26% increased chance of a good outcome, and patients with a delay of more than 4.5 hours in receiving alteplase treatment had a nonsignificant 15% increase in the chance of a good recovery (Brooks, 2014).

Aim of the Work

- Is to highlight the role of RTPA in the management of acute ischaemic stroke and decreasing it's complications.
- Provide evidence based practice guidelines for stroke care.
- Support early intervention in stroke management and develop a consistent approach to stroke care.

Points of discussions:

- Pathophysiology of acute stroke.
- Use of thrombolytic therapy in acute stroke.
- Guidelines for use of recombinant tissue plasminogen activator.

Chapter 1: Pathophysiology of ischaemic Stroke

Epidemiology

Stroke is the leading cause of disability and the fourth leading cause of death in the United States (*Towfighi and Saver*, 2011).

Epidemiologic studies indicate that 82-92% of strokes are ischemic. According to the World Health Organization (WHO), 15 million people suffer stroke worldwide each year. Of these, 5 million die, and another 5 million are left permanently disabled (MacKay and Mensah, 2012).

Race-, sex-, and age-related demographics

Black races have an age-adjusted risk of death from stroke that is 1.49 times that of white races. Hispanic races have a lower overall incidence of stroke than white and black races but more frequent lacunar strokes and stroke at an earlier age. Men are at higher risk for stroke than women; white men have a stroke incidence of 62.8 per 100, 000, with death being the final outcome in 26.3% of cases, while women have a stroke incidence of 59 per 100, 000 and a death rate of 39.2% (Schneider et al., 2004).

Although stroke often is considered a disease of elderly persons, one third of strokes occur in persons younger than 65 years. Risk of stroke increases with age, especially in patients older than 64 years, in whom 75% of all strokes occur (*Towfighi and Saver*, 2011).

Brain Anatomy

The brain is composed of 3 main structural divisions: the cerebrum, the brainstem, and the cerebellum (see the images below). At the base of the brain is the brainstem, which extends from the upper cervical spinal cord to the diencephalon of the cerebrum. The brainstem is divided into the medulla, pons, and midbrain. Posterior to the brainstem lies the cerebellum (*Rughani et al.*, 2015).

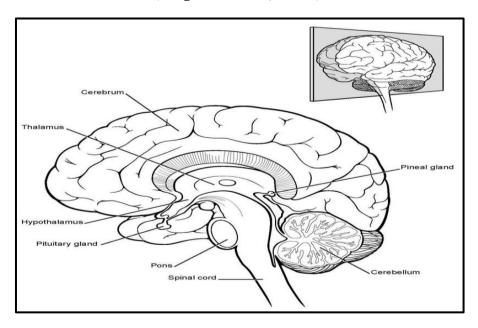


Figure (1): Brain – Midsagittal view (*Rughani et al.*, 2015)

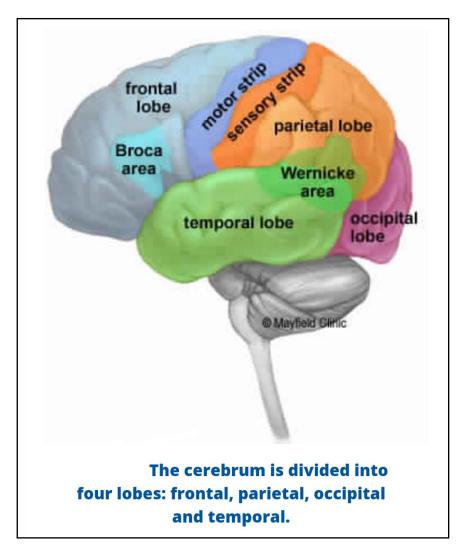


Figure (2): The four lobes of cerebrum (Rughani et al., 2015).

Brain Arterial distributions

Table (1): Vascular Supply to the Brain (Sadatomo et al. 2015)

VASCULAR TERRITORY	Structures Supplied		
Anterior Circulation (Carotid)			
Anterior Cerebral Artery	Cortical branches: medial frontal and parietal lobe Medial lenticulostriate branches: caudate head, globus pallidus, anterior limb of internal capsule		
Middle Cerebral	Cortical branches: lateral frontal and parietal lobes lateral and anterior temporal lobe		
Artery	Lateral lenticulostriate branches: globus pallidus and putamen, internal capsule		
Anterior Choroidal Artery	Optic tracts, medial temporal lobe, ventrolateral thalamus, corona radiata, posterior limb of the internal capsule		
Posterior Circulation (Vertebrobasilar)			
Posterior Cerebral	Cortical branches: occipital lobes, medial and posterior temporal and parietal lobes		
Artery	Perforating branches: brainstem, posterior thalamus and midbrain		
Posterior Inferior Cerebellar Artery	Inferior vermis; posterior and inferior cerebellar hemispheres		
Anterior Inferior Cerebellar Artery	Anterolateral cerebellum		
Superior Cerebellar Artery	Superior vermis; superior cerebellum		