Vascular dysfunction and its impact on coagulopathy in adult Egyptian thalassemic patients

Thesis

Submitted for partial fulfillment of master degree In Clinical hematology

Presented by

Magda Mamdouh Fahmy Hanna

M.B., B.Ch

Supervised by

Prof. Dr. Sozan Kamal Eldin Hussein

Professor of Internal Medicine & Clinical Hematology Faculty of Medicine, Ain Shams University

Prof. Dr. Gihan Kamal Shams Eldin

Professor of Internal Medicine & Clinical Hematology Faculty of Medicine, Ain Shams University

Dr. Hanaa Fathey Abdelsamee

Assistant Professor of Internal Medicine & Clinical Hematology Faculty of Medicine, Ain Shams University

> Faculty of Medicine Ain Shams University 2018

الخلل الوعائى وتأثيره على الاعتلال الخثرى في مرضى انيميا البحر المتوسط المصريين البالغين

رسالة توطئة للحصول علي درجة الماجستير في امراض الدم الإكلينيكيه مقدمة من الطبيلة ماجلة ممدح المبالة الماجلة ممدح المبالة الماجلة ممدح المبالة الماجلة المعلم المبالة الماجلة المعلم المبالة ا

تحت إشراف

بكالوريوس الطب و الجراحة

أستاذ الباطنه العامه وأمراض الدم الإكلينيكيه كلية الطب -جامعة عين شمس

الداجيهان كمال شملي الدين

أستاذ الباطنه العامه وأمراض الدم الإكلينيكيه كلية الطب حجامعة عين شمس

داهانوافتحی عبدانسمیع □

أستاذ مساعد باطنه عامه وأمرض الدم الإكلينيكيه كلية الطب حجامعة عين شمس كلية الطب كلية الطب جامعة عين شمس

7.11

First and foremost thanks to God, the Most Merciful whose help is the main factor in accomplishing this work.

I wish to express my deep appreciation and sincere gratitude to my dear Professors for their kind supervision and great help especially,

Prof. Dr. Hanaa Fathey Abdelsamee, Assistant Professor of Internal Medicine & Clinical Hematology, Ain Shams University, for her guidence, scientific assistance, close supervision, valuable instructions, continuous help, patience, advices and guidance. she has generously devoted much of her time and effort for planning and supervision of this study. It was a great honor to me to work under her direct supervision.

Last and not least, I want to thank my dear husband, my wonderful mother, and my great father who gave me love, support, and strength to continue this work.

Finally I would present all my appreciations to my patients without them, this work could not have been completed.

Contents

Subjects	Page
• List of Abbreviations	
List of table	
List of Figures	
• Introduction	1
Aim of the Work	4
Review of literature:	
Chapter 1: Thalassemia	5
Chapter 2: Hypercoaguloptahy in thalas	ssemia 17
Chapter 3: Vascular dysfunction	31
Patients And Methods	54
Results	59
• Discussion	91
• Summary	99
References	101
Arabic Summary	

List of Abbreviations

ACS Acute coronary syndrome. Disintegrin-like and metalloprotease with ADAMT13 thrombospondin type-1motif 13. Atrial fibrillation. **AF CBC** Complete blood picture. **CD** Cluster of differentiation. **CEC** Circulating endothelial cells. Cardio vascular disease. **CVD DVT** Deep venous thrombosis. **ECs** Endothelial cells. **ELAM-1** E-selectin adhesion molecule-1. Endothelial microparticles. **EMPs EPCs** Endothelial progenitaor cells. Erythroferrone. **ERFE** Growth and differentiation factor 15. GDF15 GP Glycoprotein. Adult hemoglobin. Hb A Fetal hemoglobin Hb F Hemoglobin Beta **HBB** Heparin co -factor ii. **HCII** Hypoxia inducible factor. HIF Human umbilical vein endotelial cells. **HUVEC** ICAM-1 Intercellular adhesion molecule-1 **MCV** Mean corpuscular volume. **mMps** Monocytic microparticles. Monocyte platelets aggregate **MPA**

Mps : Microparticles.
NO : Nitric oxide.
NTDT : Non transfusion dependant.
NVAF : Non valvular atrial fibrillation.
PAD : Peripheral arterial disease.

PAOD: Peripheral arterial occlusive disease.

PC: Platelet count.

PE: Phosphatidyl ethanoleamine.

&List of Abbreviations

WBCS

PG Prostacyclin. Pulmonary hypertension. **PHT** Phosphatidyl serine. Ps **PSGL1** P-selectin glycoprotein ligand-1. Red blood cells. **RBCs** Red cell diameter width. **RDW** TEE Thromboembolic events. Thromboelastography. **TEG** Tissue factor. TF **TGT** Thrombin generation test. TI Thalasemia intermediate. **TIBC** Total iron binding capacity. Thalasemia major. TM TSP-1 Thrombospondin. **TTP** Thrombotic thrombocytopenic purpura. Twisted gastrulation protein homolog 1. TWSG1 **ULvWF** Ultra large von willebrand factor. Vascular cell adhesion molecule-1 VCAM-1 Von willebrand factor antigen. **vWFa**

White blood cells.

÷

∠List of Table

List of Table

Tab. No.	Subject	Page
Table (1)	Characteristics of thalassemic patients	69
Table (2)	Comparison between patients and controls	70
Table (3)	CD14, CD11b, and vWF in thalassemic patients	70
Table (4)	Roc curve between ptients and controls for	75
	Platelets count, CD14, CD11b, and vWF	
Table (5)	Developmenet of TEE in patients	76
Table (6)	TE in splenectomized patients	77
Table (7)	Developmenet of TEE and its relation to LFT,	78
	RFT, HB, and WBCS in patients	
Table (8)	Relation betwen TEE and PC, vWFa, CD14 and	78
	cd11b in thalassemic patients	
Table (9)	Roc analysis for discrimination between	83
	thalassemic and controls using PC, vWFa, CD14,	
	and CD11b	
Table (10)	Different types of thalassemia and the relation to	84
	PC, vWFa,CD14, and CD11b	
Table (11)	Cd14 and CD11b with other clinical variables	86
Table (12)	CD11b and its relation to iron chelators	90

List of Figures

Fig. No.	Subject	Page
Fig. (1)	Peripheral smear in thalassemia minor	11
Fig. (2)	Peripheral smear in thalassemia major	12
Fig. (3)	erythropoiesis in thalasemic patients	13
Fig. (4)	Causes of hypercoagulation in thalassemia	26
Fig. (5)	Subunits of von Willbrand Factor	37
Fig. (6)	Comparison of platelets count in thalassemic	71
Fig. (6)	patients and controls	
Fig. (7)	Dot diagram showing platelets count in	71
Fig. (1)	thalassemic patients and controls	
Fig. (8)	Box plot showing comparison of vWF level in	72
Fig. (0)	thalassemic and controls	
Fig (0)	Dot diagram showing comparison of vWF level in	72
Fig. (9)	thalassemic and controls	
Fig. (10)	CD14 and CD11b levels in patients and controls	73
Fig. (11)	Cd14 level in patients and controls by dot diagram	73
Fig. (12)	Cd11b level in patients and controls by dot	74
Fig. (12)	diagram	
Fig. (13)	ROC curves between patients and controls using	75
Fig. (13)	platelet count, vWFa,CD14,and CD11b	
Fig. (14)	Effect of splenectomy in thrombosis among	77
11g. (14)	thalassemic patients	
Fig. (15)	Box plot showing platelets among thalassemic	79
11g. (10)	patients with history of TEE or not	
Fig. (16)	Platelets in thalassemic patients with history of	79
11g. (10)	TEE or not by dot diagram	
Fig. (17)	VWF level and its effect in thrombosis among	80
rig. (17)	thalassemic patients	
Fig. (18)	Dot diagram showing level of vWFa in thalassemic	80
11g. (10)	patients with or without TEE	
Fig. (19)	level of CD14 and CD11b in thalassemic patients	81
Fig. (19)	with or without TEE	
Fig. (20)	Dot diagram showing level of cd14 in thalassemic	81
115. (20)	patients with or without TEE	
Fig. (21)	Dot diagram showing level of cd11b in thalassemic	82
116. (21)	patients with or wihtout history of TEE	
	Roc curve between thalassemic and non	83
Fig. (22)	thalassemic patients using platelets count, vWFa,	
	cd14, and cd11b	

∠List of Figures

Fig. No.	Subject	Page
Fig. (23)	Platelet count in different thalassemic groups	84
Fig. (24)	VWF level in different thalassemic groups	85
Fig. (25)	Level of cd14 and cd11b in different thalassemic	85
	groups	
Fig. (26)	Correlation between cd11b and platelets in	87
Fig. (26)	thalassemic patients	
Fig. (27)	Correlation between platelet count and SGOT in	87
	thalassemic patients	
Fig. (28)	Correlation between platelet count and WBCs in	88
	thalasemic patients	
Fig. (29)	Correlation between cd14 and cd11b in thalassemic	88
	patients	
Fig. (30)	Correlation between cd11b and WBCs in	89
	thalassemic patients	
Fig. (31)	Proportion of cd11b with iron chelators in patients	90

Abstract

This study aimed to clarify and update the role of endothelial dysfunction and Monocytes among adolescents with transfusion dependant β- thalassemic patients using von Willebrand factor antigen (VWF:Ag) and flow analysis of circulating CD14 cytometric monocyic Micropartiles (mMps) and CD11b for monocytes activation assess their relation to hypercoagulopathy and thrombosis in these patients. This study showed that VWF Ag was higher in patients than controls and was positively correlated thrombotic in thalassemic to events patients,.There was no significance difference for CD14 between patients and controls and CD11b was higher in controls. Additionally, splenectomized patients had positive correlation with thrombosis. Iron overload caused monocytic dysfunction that could participate in decresed CD11b level and affected its role in blood coagulation.

Key Words:

Endothelial dysfunction, Monocytes, β - thalassemic, VWF: Ag, CD14, CD11b, thrombosis

Introduction

Thalassemias described as a group of inherited hemolytic anemia due to differential expressions of α or β globin genes. In β -thalassemia β globin synthesis is disturbed leading to excess α chain in red blood cell (RBC) cytosol (*Karmakar et al.*, 2016).

Beta thalassemia is classified into three types depending on severity of symptoms: thalassemia major (Cooly's anemia) which is a transfusion dependant disorder, thalassemia intermediate which encompasses a wide spectrum of clinical severities, and thalassemia minor that is symptomless (*Thein*, 2013).

In 2012 Cappellini et al., found that there is a high incidence of thromboembolic events (TEE) in thalassemic patients and that has led to the identification of a hypercoagulable state in these patients.

Although, Thalassemia intermediate (TI) patients have a milder clinical phenotype than patients with thalassemia major (TM), they have the highest incidence of TEE (Musallam et al., 2012).

The endothelium has a key role in vascular homeostasis by the releasing a variety of factors that interact with platelets, inflammatory cells and the vessel wall. Patients receiving regular blood transfusions have increased iron load that has an impact on the thrombotic response to arterial injury, and endothelium-dependent vasoreactivity (*Anderson*, 2006).

Von Willebrand factor antigen (VWF: Ag) can be used as a marker of endothelial dysfunction in many vascular diseases. It is important in the aggregation and the adhesion of platelets to subendothelial cells, when levels of circulating VWF are incressed, this may promote atherosclerosis and contribute to hypercoagulability events (*Horvath et al.*, 2004).

Microparticles (MPs) are small plasma membrane vesicles which have procoagulant function that is related to the presence of Phosohatidylserine (PS) on the outer membrane and they release tissue factor (TF) that plays an important role in coagulation (*Mooberry and Key, 2016*).

In 2014, Trzepizur and his collegues found that endothelial dysfunction was associated with elevated levels of patelets-Microparticles(CD41,CD42,CD61),endothelial-Microparticles(CD31,CD34,CD146)and leukocytic derived Microparticles (CD19,CD20,CD3,CD5,CD16,CD14).

MPs had been reported to be associated with an increased risk for both arterial and venous thrombosis and elevated levels of MPs have been reported in thalassemia (van Beers et al., 2015).

Endothelial microparticles (EMPs) are small vesicles released from disturbed endothelial cells and (van Ierssel et

al., 2012) and have recently been reported as a marker of endothelial injury and systemic vascular remodeling.

Endothelial microparticles can promote a prothrombogenic and proinflammatory effect leading to vascular dysfunction (*Sabatier et al., 2014*).

Aim of the work

Aim of this study was to clarify the role of monocytes, platelets and endothelial activation in the pathogenesis of prothrombotic and hypercoagulable state among transfusion dependant adult Egyptian β -thalassemic patients in different types of β -thalassemia with or without splenectomy by measuring level of vWFA as a marker of endothelial dysfunction, level of cd14 as marker for monocyte microparticles and cd11b as marker for monocyte activation .

Thalassemia

Beta-thalassemia is an autosomal recessive hemoglobinopathy diorder, it affects the production of the β -globin chains of the hemoglobin. Beta globin gene mutations on chromosome 11 leads to impairment in the production of β -globin chains with accumulation of excess α -globin chains and formation of insoluble hemichromes (*Makis et al.*, 2016).

The **globins** are a superfamily of heme-containing globular proteins, involved in binding and/or transporting oxygen. These proteins all incorporate the globin fold, a series of eight alpha helical segments. Two prominent members include myoglobin and hemoglobin. Both of these proteins reversibly bind oxygen via a heme prosthetic group. They are widely distributed in many organisms (**Vinogradov et al., 2007**).

All normal human globins found in adults have one pair of α -chains. The α -chains can combine with β -chains $(\alpha_2\beta_2)$, δ -chains $(\alpha_2\delta_2)$ and γ -chains $(\alpha_2\gamma_2)$ (**Hardison and Ross, 2012**).

The β globin chains are encoded by a single gene on chromosome 11; α globin chains are encoded by two closely linked genes on chromosome 16 (**Petrou and Mary**, **2010**). So,in a normal person with two copies of each chromosome,