

Analytical study on certain leached components from plastic and metallic packages

A Thesis

Presented for the partial fulfillment of

Master Degree in Pharmaceutical Sciences (Pharmaceutical Analytical Chemistry)

By

Ola Moataz Ahmed Mohamed

B.Sc. in Pharmaceutical Sciences 2013
Department of Pharmaceutical Analytical Chemistry

Faculty of Pharmacy Ain Shams University

Under Supervision of

Prof. Dr. Amira Mabrouk El-Kosasy

Professor of Pharmaceutical Analytical Chemistry Faculty of Pharmacy, Ain Shams University

The Late Associate Prof. Dr. Omar Abd El-Aziz Ghonim

Associate Professor of Pharmaceutical Analytical Chemistry Faculty of Pharmacy, Ain Shams University

Associate Prof. Dr. Miriam Farid Ayad

Associate Professor of Pharmaceutical Analytical Chemistry Faculty of Pharmacy, Ain Shams University

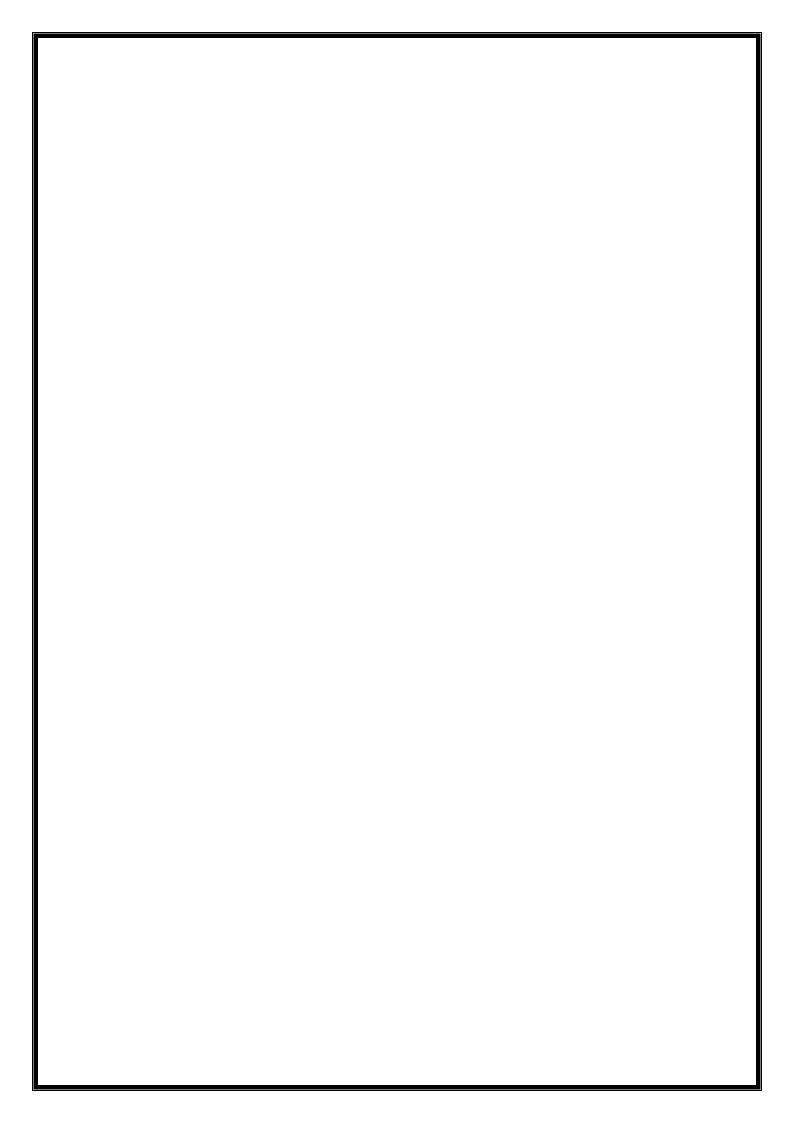
Pharmaceutical Analytical Chemistry Department

Faculty of Pharmacy - Ain Shams University

Approval Sheet

Title of the Master Degree Thesis in Pharmaceutical Sciences (Pharmaceutical Analytical Chemistry)

Analytical study on certain leached components from plastic and metallic packages


Name of the candidate: Ola Moataz Ahmed Mohamed

Submitted to:

Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Ain Shams University, 2018

Committee in Charge:

- 2. Prof. Dr. Mohie Mohammed Khaled Sharaf El Din...... Professor of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Mansoura University.
- **3. Prof. Dr. Amira Mabrouk El-Kosasy....**Professor of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Ain Shams University.
- **4. Associate Prof. Dr. Miriam Farid Ayad.....**Associate Professor of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Ain Shams University.

ACKNOWLEDGEMENTS

All thanks and gratitude to **Allah** for giving me the strength to finish this thesis and for guiding and supporting me throughout my life.

I would like to express my sincere gratitude and deep appreciation to my thesis advisor **Prof. Dr. Amira Mabrouk El-Kosasy,** Professor of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Ain Shams University for her valuable scientific guidance, patience, continuous support and encouragement during the whole time of my work.

I would like to offer special thanks to **Dr. Omar Abd El-Aziz Ali Ghonim,** Associate Professor of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Ain Shams University, who, although no longer with us, continues to inspire by his example and dedication to the students he served over the course of his career.

My profound thanks to **Dr. Miriam Farid Ayad,** Associate Professor of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Ain Shams University for being my source of motivation, and for her close and continuous supervision. The door to her office was always open whenever I ran into a trouble spot or had a question about my research or writing.

I am deeply indebted to **Dr. Hassan Hendawy**, Associate Professor of Pharmaceutical Analytical Chemistry, National Organization for Drug Control and Research (NODCAR) for his effort, time and patience. He taught me a lot and guided me throughout the whole work. His selfless time and care were sometimes all that kept me going.

I also wish to thank all my colleagues in the Department of Pharmaceutical Analytical Chemistry for their untiring help and friendly cooperation.

To my mother, father, my sister Raghda and my brother Ahmed, my beloved husband Marwan without your passionate support and help I could not have conducted this work successfully.

Thank you very much, everyone!

Ola Moataz

Table of Contents

Table of Contentsi
List of figuresix
List of tablesxvii
Prefacexxiii
Summary xxv
Part I: General Introduction1
I.1. Food Contact Materials2
I.2. Classification of possible leaching components from food contact
materials (FCMs)4
I.3. Migrants under analytical investigation in this thesis9
I.3.1. The role of these migrants in food packaging manufacture9
I.3.2. Potential health hazards associated with exposure to these migrants
from food packaging materials10
I.3.3. Global legislation and limits for these migrants11
Part II: Literature review13
II.1.The Studied Compounds14
II.1.A. Bisphenol A (BPA)14
II.1.A.1. Chemical properties14
II.1.A.2. Physical Properties14
II.1.B. Bisphenol-A-diglycidyl ether (BADGE)15
II.1.B.1. Chemical Properties15

II.1.B.2. Physical Properties15
II.1.C. Bisphenol-A bis (3-chloro-2-hydroxypropyl) ether
(BADGE-2HCl)16
II.1.C.1. Chemical Properties16
II.1.C.2. Physical Properties16
II.1.D. Bisphenol-A-(2,3-dihydroxypropyl) glycidyl ether
(BADGE·H ₂ O)17
II.1.D.1. Chemical Properties17
II.1.D.2. Physical Properties17
II.1.E. Bisphenol-A-(3-chloro-2-hydroxypropyl)(2,3-
dihydroxypropyl) ether (BADGE·HCl·H ₂ O)18
II.1.E.1. Chemical Properties18
II.1.E.2.Physical Properties18
II.2. Methods of Analysis19
II.2.1. Methods of Analysis of Bisphenol A19
II.2.2. Methods of Analysis of Bisphenol -A- diglycidyl ether and its reaction products69
Part III: Novel carbonaceous and carbon nanotubes-based
electrodes for determination of Bisphenol A in bottled water
and canned food samples using differential pulse
voltammetry
III.1. Introduction80
III.2. Experimental83
III.3. Results and Discussion

III.4. Conclusion	
Part IV: Chemometrics-assisted methods for simultaneous	
determination of Bisphenol -A- diglycidyl ether and its	
reaction products	127
Section A: Chemometrics-assisted simultaneous	
voltammetric determination of Bisphenol -A- diglycidyl ether	
and its reaction products in bottled water and canned food	
samples	128
IV.A.1. Introduction	
IV.A.2. Experimental	
IV.A.3. Results and Discussion	
IV.A.4. Conclusion	
Section B: Chemometrics-assisted spectrophotometric	
methods for simultaneous determination of Bisphenol -A-	
diglycidyl ether and its reaction products in canned food	
samples	169
IV.B.1. Introduction	
IV.B.2. Experimental	
IV.B.3. Results and Discussion	
IV.B.4 Conclusion 179	

Part V: High-performance liquid chromatographic method	
for simultaneous determination of Bisphenol-A-diglycidyl	
ether and some of its reaction products in canned foods using	
photodiode array detector	196
V.1. Introduction	
V.2. Experimental198	
V.3. Results and Discussion	
V.4. Conclusion	
Part VI: General Discussion	235
References	253
ملخص الرسالة	ĺ

List of Abbreviations

ANOVA Analysis of variance

APCI Atmospheric pressure chemical ionization

AuNPs Gold nanoparticles

 β -CDP β -cyclodextrin polymer

BADGE Bisphenol -A- diglycidyl ether

BADGE-2HCl Bisphenol A bis(3-chloro-2-

hydroxypropyl)ether

BADGE·H₂O Bisphenol-A-(2,3-dihydroxypropyl) glycidyl

ether

BADGE·HCl·H₂O Bisphenol-A-(3-chloro-2-hydroxypropyl)

(2,3-dihydroxypropyl)ether

BFDGE Bisphenol-F-diglycidyl ether

BP Biphenol

BPA Bisphenol A

BPAF Bisphenol AF

BPAP Bisphenol AP

BPB Bisphenol B

BPE Bisphenol E

BPF Bisphenol F

BPP Bisphenol P

BPS Bisphenol S

BPZ Bisphenol Z

B-R buffer Britton-Robinson buffer

CC Chronocoulometry

C-dots Carbon dots

CE Capillary electrophoresis

CL Chemiluminescence

CPE Carbon paste electrode

CV Cyclic voltammetry

CZE Capillary zone electrophoresis

DAD Diode array detection

DPV Differential pulse voltammetry

ECL Electrochemiluminescence

EDC Endocrine disruptor chemical

El Electron ionization

ESI Electrospray ionization

EU European Union

FCMs Food contact materials

FI-CL Flow injection Chemiluminescence method

GC Gas chromatography

GCE Glassy carbon electrode

HPLC High-performance liquid chromatography

HRP Horseradish peroxidase enzyme

ICH International Conference on Harmonization

IUPAC International Union of Pure and Applied

Chemistry

LC Liquid chromatography

LOD Limit of detection

LOQ Limit of quantitation

LVs Latent variables

MEKC Micellar electrokinetic chromatography

MIF Molecular imprinted film

MIP Molecular imprinted polymer

MS Mass spectrometry

MS/MS Tandem mass spectrometry

MWCNTs Mutli-walled carbon nanotubes

NA Not Available

p=0.05 The probability of results in 95%

PCR Principal component regression

PDA Photodiode array

PGE Pencil graphite electrode

PLS Partial least squares

R% Recovery percent

r Correlation coefficient

RSD Relative standard deviation

% RSD Percentage relative standard deviation

SCF Scientific Committee on Food

SD Standard deviation

SMLs Specific migration limits

SWCNTs Single-walled carbon nanotubes

SWV Square wave voltammetry

TBBPA Tetrabromobisphenol A

TCBPA Tetrachlorobisphenol A

TD-GC-MS Thermal desorption gas chromatography

mass spectrometry

t-test Student "t" test

UHPLC Ultra high-performance liquid chromatography

UPLC Ultra performance liquid chromatography

UV Ultraviolet

List of figures

Figure [1]: SEM images of (a) Carbon paste electrode (CPE), (b) Disposable pencil
graphite electrode (PGE), (c) Single-walled carbon nanotube (SWCNTs) and
(d) Multi-walled carbon nanotubes (MWCNTs)102
Figure [2]: Cyclic voltammogram of 60.877 μg mL-1 BPA at pH=7 using CPE with
scan rate= 100 mV s ⁻¹ , anodic peak at 666 mV103
Figure [3]: Cyclic voltammogram of 0.35 μg mL-1 BPA at pH=7 using PGE with
scan rate= 100 mV s ⁻¹ , anodic peak at 607 mV103
Figure [4]: Cyclic voltammogram of $3.9~\mu g~mL^{-1}$ BPA at pH=7 using SWCNTs with
scan rate= 100 mV s ⁻¹ , anodic peak at 617 mV104
Figure [5]: Cyclic voltammogram of 3.9 μg mL ⁻¹ BPA at pH=7 using MWCNTs with
scan rate= 100 mV s ⁻¹ , anodic peak at 620 mV104
Figure [6]: The effect of pH on the peak current (I_{pa}) and peak potential (E_{pa}) of
BPA at CPE using DPV105
Figure [7]: The effect of pH on the peak current (I_{pa}) and peak potential (E_{pa}) of
BPA at PGE using DPV105
Figure [8]: The effect of pH on the peak current (I_{pa}) and peak potential (E_{pa}) of
BPA at SWCNTs using DPV106
Figure [9]: The effect of pH on the peak current (I_{pa}) and peak potential (E_{pa}) of
BPA at MWCNTs using DPV106
Figure [10]: Relation between I_{pa} ($\mu A)$ and v ½ for oxidation of BPA at CPE 107
Figure [11]: Relation between I_{pa} (µA) and $\nu^{\frac{1}{2}}$ for oxidation of BPA at PGE 107
Figure [12]: Relation between I_{12} (uA) and $v^{\frac{1}{2}}$ for oxidation of BPA at SWCNTs. 108

Figure [13]: Relation between I_{pa} (μA) and ν ½ for oxidation of BPA at MWCNTs.
108
Figure [14]: Relation between log I_{pa} (μA) and log ν (mV s ⁻¹) for oxidation of BPA
at CPE109
Figure [15]: Relation between log I_{pa} (μA) and log ν (mV s ⁻¹) for oxidation of BPA
at PGE109
Figure [16]: Relation between log I_{pa} (μA) and log ν (mV s ⁻¹) for oxidation of BPA
at SWCNTs110
Figure [17]: Relation between log I_{pa} (μA) and log ν (mV s ⁻¹) for oxidation of BPA
at MWCNTs110
Figure [18]: Relation between E_{pa} (V) and $\ln \nu$ for oxidation of BPA at CPE 111
Figure [19]: Relation between E_{pa} (V) and ln ν for oxidation of BPA at PGE 111
Figure [20]: Relation between E_{pa} (V) and $ln\ v$ for oxidation of BPA at SWCNTs. 112
Figure [21]: Relation between E_{pa} (V) and $ln\ \nu$ for oxidation of BPA at MWCNTs.
Figure [22]: The proposed oxidation mechanism of BPA at the developed
electrodes113
Figure [23]: DPV voltammograms of BPA over concentration range from 1.81 to
6.43 μg mL ⁻¹ (pH=7), peak at 505 mV at CPE114
Figure [24]: DPV voltammograms of BPA over concentration range from 0.18 to
0.94 μg mL ⁻¹ (pH=7), peak at 554 mV at PGE114
Figure [25]: DPV voltammograms of BPA over concentration range from 2.03 to
4.91 μg mL ⁻¹ (pH=7), peak at 520 mV at SWCNTs in 15 mL buffer solution 115

Figure [26]: DPV voltammograms of BPA over concentration range from 0.91 to
4.91 μg mL ⁻¹ (pH=7), peak at 530 mV at MWCNTs in 15 mL buffer solution.
Figure [27]: Calibration curve of BPA (1.81-6.43 μg mL ⁻¹), pH=7using DPV at CPE.
116
Figure [28]: Calibration curve of BPA (0.18-0.94 μg mL ⁻¹), pH=7 using DPV at
disposable PGE116
Figure [29]: Calibration curve of BPA (2.03-4.91 μg mL ⁻¹) using DPV at SWCNTs in
15 mL buffer solution (pH=7)117
Figure [30]: Calibration curve of BPA (0.91-4.91 $\mu g\ mL^{-1}$) using DPV at MWCNTs in
15 mL buffer solution (pH=7)117
Figure [31]: Overlapped peaks in DPV mode of the same concentration (3.10 μg
mL-1) of BADGE, BADGE-2HCl, BADGE-HCl-H2O and BADGE-H2O using PGE at
pH=12143
Figure [32]: The effect of pH on the peak current (I_{pa}) and peak potential (E_{pa}) of
BADGE at PGE using DPV143
Figure [33]: The effect of pH on the peak current (I_{pa}) and peak potential (E_{pa}) of
BADGE-2HCl at PGE using DPV144
Figure [34]: The effect of pH on the peak current (I_{pa}) and peak potential (E_{pa}) of
BADGE·HCl·H ₂ O at PGE using DPV144
Figure [35]: The effect of pH on the peak current (I_{pa}) and peak potential (E_{pa}) of
BADGE·H ₂ O at PGE using DPV145
Figure [36]: Relation between I_{pa} (µA) and $\nu^{\frac{1}{2}}$ for oxidation of $$ BADGE at PGE. 145
Figure [37]: Relation between I_{pa} (µA) and $\nu^{ 1\!\!/_{\!\!2}}$ for oxidation of BADGE-2HCl at PGE.
146