

Ain Shams University Faculty of Engineering Civil Engineering Department

"Analytical Study For Behavior Of Reinforced Light-Weight Concrete Deep Beams With Web Openings"

A Thesis Submitted to the Faculty of Engineering at Ain Shams University in Partial Fulfilment of the Requirements for the Degree of MASTER OF SCIENCE

In

CIVIL ENGINEERING

Submitted By

Eng. Ghada Nagah AbdElhameed B.Sc. in Civil Engineering, October 6 University, 2012

Under Supervision of

Prof.Dr. Amr H. Zaher Professor of R.C structures, Faculty of Eng., Ain Shams University, Cairo, Egypt

Dr. Mohamed S. AbdElghaffar AsociateProf., Civil Eng. Dept, Shoubra Faculty of Eng., Benha University, Egypt Dr. Wael M. Montaser
Assistant Professor, Building
Construction. Dept., Faculty of Eng.,
October 6 University,
Giza, Egypt

Cairo - (2018)

Ain Shams University Faculty of Engineering Civil Engineering Department

Examiner Committee

Name: Ghada Nagah Abd Elhameed AboElsoud

Thesis: Analytical study for behaviour of reinforced light-weight concrete

deep beams with web openings

Degree: Master of Science in Engineering

Name and affiliation	Signature
Prof. Dr. Ibraheem Glal Shabaan	
Professor of Structural Eng. Dept., Faculty of Engineering, liver pool University	
Prof. Dr. Omar Ali Mousa Elnawawi	
Professor of Structural Eng. Dept., Faculty of Engineering, Ain Shams University	
Prof. Dr. Amr Hussien Zaher	•••••
Professor of Structural Eng. Dept., Faculty of Engineering, Ain Shams University	
Dr. Mohamed Said Abdelghaffar AssociateProf., Civil Eng. Dept, Shoubra Faculty of Engineering, Benha University,	••••••

Date: July 2018

STATEMENT

This thesis is submitted to Ain Shams University, Cairo, Egypt, on July 201^h for the degree

of Master of Science in Civil Engineering (Structural).

The work included in this thesis was carried out by the author at reinforced concrete unit lab

in the faculty of engineering in the Department of Civil Engineering(Structural Division), Ain

Shams University.

No part of this thesis has been submitted for a degree or qualification at any other University

or Institute.

Date:

/ / 2018

Name: Ghada Nagah Abd Elhameed Abo Elsoud

Signature:

INFORMATION ABOUT THE RESEARCHER

Name: Ghada Nagah Abd Elhameed Abo Elsoud

Date of Birth: December 5, 1990

Qualifications: B. Sc. Degree in civil Engineering (Structural Eng.) Faculty of

Engineering, October 6 University (2012)

Present Job: Teaching Assistant in Building and Construction Department, Faculty of

Engineering, October 6 University

Signature:

ACKNOWLEDGEMENT

I hereby would like to express my deep gratitude and thanks to Prof. Dr. Amr H. Zaher, Dr. Wael Montaser, Dr. Mohamed Said and Dr. Tarik Elslakawy for their support, continuous encouragement and distinctive supervision throughout the course of this work. They helped to provide me with up to date technical references that were of great help in the present work.

Also, I cannot express; in words; my thanks and gratitude to my family for their great and continuous help and support they provided me to finish this work in a suitable form.

Nevertheless, I cannot forget the support of my colleagues in the Civil Engineering Department October 6 University as well as from my Professors for their encouragement and concern throughout the scope of the work.

Finally, I dedicate this thesis to my **FATHER**, **MOTHER**, **BROTHER**, **SISTER**, **my Daughter AND FINALY MY Husband** for their continuous encouragement and fruitful care.

ABSTRACT

Light weight aggregate and light weight concrete are old and new materials in the world of the engineering design and construction. Concrete structures such as bridges and buildings are constantly getting high consideration to determine the design loading. Dead load is the first consider for any structural design. Finding any way either in the method of construction application or in the type of the construction materials to reduce the dead load will be a magnificent benefit for structural design.

Light weight aggregate brought the benefit of the dead load reduction. Various types of lightweight aggregate with good and carefully mix proportioning could produce a lightweight concrete with adequate concrete compression strength. Desirable concrete strength and durability had been achieved by using light weight concrete as much as achieved by using normal weight concrete.

Beside the benefit of dead load reduction, there are many more advantages by using light weight concrete including: reduction in dimensions of the structural elements then their steel reinforcement, reduction the transporting equipment expenses. Increasing the space availability by reduction in the sizes of columns, slabs and beams dimensions. In addition, Light weight aggregate provides better heat and sound insulation than normal weight concrete, maintains good fire resistance, provides great buoyancy for the offshore and marines structures, and the environmental advantage by using fly ash for light weight aggregates and light weight concrete.

The behavior of the deep-beam is examining using the finite element software ANSYS. Non Linear Finite Element Analysis (NLFEA) used to predict the behavior of reinforced light weight concrete deep-beams, Results from nonlinear finite element analyses are compared with experimental results carried in the literature which reveals the reasonable accuracy of the modeling, Parametric study and Strut and Tie modeling for Light weight concrete deep-beams with and without web openings.

This Analytical research work was lead up to study the shear behavior of reinforced Light-Weight Concrete (LWC) and Normal-Weight Concrete (NWC) simply supported deepbeams with and without web openings under the effect of one vertical concentrated load.

The program included ten Light-Weight reinforced concrete deep beams and four Normal-Weight deep beams. All specimens with an overall cross-section of (80 x 400 mm.) and length of deep beams (1100,1580 and 1900 mm). There is one Light-Weight concrete specimen without web opening and the thirteen-remaining light and normal weight concrete specimens with web openings.

The openings developed in different three locations in shear span zone, openings dimensions are $(80 \times 80,140 \times 80 \text{ and } 180 \times 80 \text{ mm})$, number of openings one or two openings in shear span zone. The main reinforcement of all studied deep beams was kept constant and equal to $4\emptyset16$ while top steel $2\emptyset10$ for all specimens. The basic variables of this study were the size and position of the opening, the concrete type, and span-to-depth ratio. The general deformational behavior of the deep-beams was examined and reported (cracking, load deflection behavior and crack pattern, deformations).

The obtained results indicated that the presence of web openings (equal to 20% and 40 % of the total web height, respectively) in the load path led to a reduction in the ultimate shear strength of LWC simple deep-beams by about 10% to 55 % when compared with a similar beam without opening.

A comparison between the results of Non Linear Finite Element Analysis (NLFEA) obtained from the numerical analysis and experimental study results of other research. A non-linear finite element analysis (NLFEA) model was established to emulate the shear behavior of tested beams from other research, in another site of load deflection behavior and crack pattern. It can be concluded that a good agreement between the numerical and experimental results was achieved. The ratio of the predicted to the experimental ultimate strength ranged between 0.90 and 0.99.

A parametric study included one hundred eleven deep beams were modeled by using ANSYS program. For the shear lightweight reinforced concrete deep beams. The parameters considered are the tensile steel, openings additional top and bottom reinforcement, openings additional sides reinforcement, and openings additional sides, top and bottom reinforcement. the performing of the comparison was concerning about those parameters. mid-span maximum deflection and ultimate loads had been determined by using ANSYS V.15.

A non-linear finite element analysis (NLFEA) model using ANSYS was created for LWC and NWC deep beams. The concrete was modeled by Solid65 with a stress-strain relationship

based on unconfined conditions. The reinforcing bars were modeled by using 3D-Link180 element adopting a bilinear stress-strain relationship.

A theoretical study was performed using Strut-and-Tie Models and the results were compared with analytical results from non-linear finite element analysis.

The results of this analytical work were combined with some other available information to formulate some recommendations for designers and researchers concerning the analysis, design, and construction of Light-Weight concrete beams. The observed behavior of the Light-Weight concrete specimens up to failure greatly encourages the use of Light-Weight concrete in all structural elements.

Keywords:Light-weight concrete, Deep Beams, Shear, Nonlinear Finite Element Analysis.

CONTENTS

Contents

CH	APTER 1 INTRODUCTION	1	
1.1.	General		1
1.2. L	ight Weight Concrete		1
1.3.	Deep Beams		2
1.4.	Objectives		
1.5.	Thesis Arrangement		
	APTER 2 LITERATURE REVIEW	5	
2.1.	General	_	. 5
2.2.	Lightweight Aggregates		
2.3.	Light Weight Concrete		
2.4.	Defination Of Structural Light Weight Concrete		
2.5.	Classification of Lightweight Concretes		
2.6.	Types of Lightweight Aggregates		
2.7.	Previous studies		
2.8.	Basic Shear Theories		
2.8.			
	2. Beem Cracking Modes		
	3. Shear Transfer Mechanism		
	Shear Failure Modes:		
	Beam Without Shear Reinforcement		
	Beam With Shear Reinforcement		
	Factor Affecting The Shear Strength:		
).1. Tensile Strength Of Concrete		
	<u> </u>		
	D.2. Longitudinal ReinforcementD.3. Shear Span To Depth Ratio		
	1 1		
	0.4. Size Of Beam		
).6. Web Reinforcement		
	Effect Of Stirrups On Concrete Behavior		
	Shear Behavior Of Deep Beams		
	2.1. Internal Forces in a Cracked RC Deep Beam		
	2.2. Shear Friction AnalogyPrevious studies on the shear behavior of the deep beams		
	-		
	Codes provisions for shear design of RC deep beams		
	5.1. ACI 318-02		
	5.2. ECCS-2001		
2.4.	3. EC-2	•••••	31
CH	ADTED 2 NON LINEAD FINITE ELEMENT ANALVOIO	22	
	APTER 3 NON-LINEAR FINITE ELEMENT ANALYSIS	33	22
3.1.	General		
	Nonlinear Finite Element Analysis Advantages		
3.3.	Element Type		
3.3.			
	2. Link180-3d		
	3. Details of thespecimens		
3.4.	Analysis of simple deep beam with and without openings	• • • • • • • • • • • • • • • • • • • •	37

3.4.1 Model Description and Material	37
3.4.2.Meshing	
3.4.3.Loads and Boundary Conditions	
3.5. Finite Element Results.	
3.5.1. Craking Behaviour	44
3.5.2. Failure load	45
3.5.3. Effect Of Opening Location And Size	46
3.6. Validation of the FEM	
CHAPTER 4 PARAMETRIC STUDY AND STRUT AND TIE MOD	ELING 70
4.1. General	70
4.2. Description of parametric	70
4.3. Parametric Study	76
4.3.1. Tensile steel reinforcement	76
4.3.1.1 Influence of the tensile steel reinforcement	76
4.3.2 Addition for openings top and bottom reinforcement	
4.3.2.1 Influence of addition for openings top and bottom reinforcem	ent86
4.3.3. Addition for openings sides reinforcement	
4.3.3.1 Influence of addition for openings sides reinforcement	
4.3.4 Addition for openings sides, top and bottom reinforcement	101
4.3.4.1 Influence of addition for openings sides, top and bottom reinf	
4.4. Strut-and-tie model's	108
4.4.1. Introduction	
4.5. Strut-and-tie model approach	108
4.5.1. Basic assumptions	
4.5.2. Material Strengths in the Strut-and-TieModel	
4.5.2.1.ReinforcedTies.	
4.5.2.2. ConcreteStruts	
4.6. Modes of Failures	
4.6.1. Tension failure	
4.6.2. Compression failure	
4.6.3. Diagonal tension Failure	
4.7. Types Of Models	
4.7.1. Numerical Procedure of One Concentrated Point Loads	
4.7.2. Verification Examples	
4.8. Strut-and tie modeling of tested simple deep beams with opening	
4.8.1. Verification Examples	
4.9. Strut-and tie modeling of tested simple deep beams with different p	
4.10. Comparaison between the strut and tie model results and the analyst	tical results 134
CHAPTER 5 SAMMARY AND CONCLUSIONS	135

References

List of figures

Figure 2.1 Approximate unit weight and use classification of LWA concretes	7
Figure 2.2 Internal forces in a beam	9
Figure 2.3 Distribution of flexural shear stresses.	10
Figure 2.4 Principal stresses.	11
Figure 2.5 A cracked beam without shear reinforcement	11
Figure 2.6 A cracked beam with shear reinforcement	
Figure 2.7Internal forces in cracked beam	13
Figure 2.8 Effect of a/d on shear for beams without reinforcement	15
Figure 2.9 Shear failure modes	
Figure 2.10 Shear strength vs. longitudinal reinforcement	18
Figure 2.11 Shear strength vs. a/d	18
Figure 2.12 Distribution of internal shears of beam with shear reinforcement	20
Figure 2.13 dry friction anology for areinforced cocrete beam	
Figure 2.14 dry friction analogy in an inclined section for a reinforced concrete beam	24
Figure 3.1 Geometry of 3-D Solid 65 Element	35
Figure 3.2 Link8-Element.	
Figure 3.3 Meshing of cross section	39
Figure 3.4 Details of Reinforcement	
Figure 3.5 Shows the size and location of web opening	40
Figure 3.6 Meshing of Beam DLOH2	42
Figure 3.7 Meshing of Beam DLOH7	
Figure 3.8 Meshing of Beam DLOH10	
Figure 3.9 Applied loads and boundary conditions	
Figure 3.10 Principal stresses of tested beams	
Figure 3.11 Deformed shape of selected beams.	
Figure 3.12 Cracking and failure loads for tested beams	53
Figure 3.13 Concrete type effect on cracking and failure loads for (DLOH7,DNOS7)	53
Figure 3.14 Concrete type effect on cracking and failure loads for (DLOH8,DNOS8)	
Figure 3.15 Concrete type effect on cracking and failure loads for (DLOH9,DNOS9)	54
Figure 3.16 Concrete type effect on cracking and failure loads for (DLOH10,DNOS10)	
Figure 3.17 Load-deflection curve from finite element results versus test results for beam	
Figure 3.18 Cracks patterns of FEM and Experimental beams	
	70
Figure 4.2 Openings additional top and bottom reinforcement. for P2	
Figure 4.3 Openings additional sides reinforcement. for P3	
Figure 4.4 Openings additional sides, top and bottom reinforcement. for P4	
Figure 4.5 Effect of different tensile steel reinforcement on the load deflection curves for	
solidbeam	
Figure 4.6 Effect of different tensile steel reinforcement on the load deflection curves for	
beams with opening (1A13)	
Figure 4.7 Effect of different tensile steel reinforcement on the load deflection curves for	
beams with openings (1A12)	
Figure 4.8 Effect of different tensile steel reinforcement on the load deflection curves for	
beams with openings (1B22)	

Figure 4.9 Effect of different tensile steel reinforcement on the load deflection curves for
beams with openings (2A12)80
Figure 4.10 Effect of different tensile steel reinforcement on the load deflection curves for
beams with openings (1C32)81
Figure 4.11 Effect of different tensile steel reinforcement on the load deflection curves for
beams with openings (2C32)81
Figure 4.12 Effect of different tensile steel reinforcement on the load deflection curves for
beams with openings (2C31)82
Figure 4.13 Effect of tensile steel on ultimate load82
Figure 4.14 Cracking and failure loads for tested beams
Figure 4.15 Concrete stress distribution for specimen DA3at ultimate load
Figure 4.16 Effect of addition for openings top and bottom reinforcement on the load deflection
curves for beams with openings(1A13)89
Figure 4.17 Effect of addition for openings top and bottom reinforcement on the load deflection
curves for beams with openings (1A12)90
Figure 4.18 Effect of addition for openings top and bottom reinforcement on the load deflection
curves for beams with openings (1B22)90
Figure 4.19 Effect of addition for openings top and bottom reinforcement on the load
deflection curves for beams with openings (2A12)91
Figure 4.20 Effect of addition for openings top and bottom reinforcement on the load
deflection curve for beams with the same openings (1C32)
Figure 4.21 Effect of addition for openings top and bottom reinforcement on the load deflection
curves for beams with openings (2C32)92
Figure 4.22 Effect of addition for openings top and bottom reinforcement on the load deflection
curves for beams with the same openings (2C31)92
Figure 4.23 Effect of addition for openings top and bottom reinforcementon ultimate load
of deep beams93
Figure 4.24 Concrete stress distribution for specimen DO3 at ultimate load93
Figure 4.25 Concrete stress distribution for specimen DP3 at ultimate load93
Figure 4.26 Effect of addition for openings top and bottom reinforcement on the load deflection
curves for beams with openings(1A13)97
Figure 4.27 Effect of addition for openings top and bottom reinforcement on the load deflection
curves for beams with openings (1A12)97
Figure 4.28 Effect of addition for openings top and bottom reinforcement on the load deflection
curves for beams with openings (1B22)98
Figure 4.29 Effect of addition for openings top and bottom reinforcement on the load
deflection curves for beams with openings (2A12)98
Figure 4.30 Effect of addition for openings top and bottom reinforcement on the load
deflection curve for beams with the same openings (1C32)
Figure 4.31 Effect of addition for openings top and bottom reinforcement on the load deflection
curves for beams with openings (2C32)99
Figure 4.32 Effect of addition for openings top and bottom reinforcement on the load deflection
curves for beams with the same openings (2C31)
Figure 4.33 Effect of addition for openings top and bottom reinforcementon ultimate load
of deep beams
Figure 4.34 Effect of addition for openings top and bottom reinforcement on the load deflection
curves for beams with openings(1A13)
Figure 4.35 Effect of addition for openings top and bottom reinforcement on the load deflection
curves for beams with openings (1A12).

Figure 4.36 Effect of addition for openings top and bottom reinforcement on the load de	flection
curves for beams with openings (1B22)	105
Figure 4.37 Effect of addition for openings top and bottom reinforcement on the load	
deflection curves for beams with openings (2A12)	105
Figure 4.38 Effect of addition for openings top and bottom reinforcement on the load	
deflection curve for beams with the same openings (1C32)	106
Figure 4.39 Effect of addition for openings top and bottom reinforcement on the load de	flection
curves for beams with openings (2C32)	106
Figure 4.40 Effect of addition for openings top and bottom reinforcement on the load de	flection
curves for beams with the same openings (2C31)	107
Figure 4.41 Effect of addition for openings top and bottom reinforcementon ultimate	load
of deep beams	107
Figure 4.42 Diagonal tension forces in compression strut	
Figure 4.43 The proposed plastic truss model for beams, (Foster et al., 1998)	117
Figure 4.44 Symbols and details of Type I model for simple deep beam subjected	119
Figure 4.45 Strut-and-tie modeling for tested beams.	125
Figure 4.46 Strut-and-Tie modeling for beam DLOH3	125

List of tables

Table 3.1 Details of simply suporteddeep beams.	38
Table 3.2 Mechanical properties of reinforcement	39
Table 3.3First cracking load, ultimate loads	47
Table 7.4 Comparison of Ultimate Load and Deflection	57
Table 4.1 Parametric investigation on tensile steel ratio.	72
Table 5.7 Parametric investigation on openings addition top and bottom	
reinforcement73	
Table 4.3 Parametric investigation on openings addition sides reinforcement	74
Table 4.4 Parametric investigation on openings addition sides reinforcement	75
Table 4.5 Values of the effective factor, (vs), of concrete struts for solid simple deep ar	ıd
short beams	112
Table 5.7 Proposed beams modeling classification system based on (a/d)	114
Table 4. Y The strength of the beam can be obtained	130
Table 4.8 Comparison between the strut-and-tie model results and the analytical results.	131
Table 4.9 Comparison between the strut-and-tie model results and the analytical results	with
parameters	132