

Ain Shams University Faculty of Science

SYNTHESIS OF HYBRID ORGANIC – INORGANIC MATERIALS FOR POLLUTED GROUNDWATER TREATMENT SAN EL HAGER EAST DELTA EGYPT

Thesis submitted by

FATMA MOHAMED EL-SAYED

(B.Sc. Chemistry& physics, 2007)

For the Partial Fulfillment of the Requirements of the Master's Degree in Science (Inorganic Chemistry)

To
DEPARTMENT OF CHEMISTRY
FACULTY OF SCIENCE
AIN-SHAMS UNIVERSITY

Ain Shams University Faculty of Science

SYNTHESIS OF HYBRID ORGANIC – INORGANIC MATERIALS FOR POLLUTED GROUNDWATER TREATMENT SAN EL HAGER EAST DELTA EGYPT

AThesis submitted

For the Partial Fulfillment of the Requirements of the Master's Degree in Science (Inorganic Chemistry)

by

FATMA MOHAMED EL-SAYED (B.Sc. Chemistry& physics, 2007)

Desert Research Center

Supervised By

Prof. Dr. Mohamed Sabry Abdel-Mottaleb

Prof. of Inorganic Chemistry Fac. of sci. Ain Shams University

ASS.Prof. Dr. Mustafa Mohamed Said Prof. of Water Chemistry

Desert Research Center

Dr. Mohamed El sayed Abdelfattah

Water desalination Desert Research Center

Approval Sheet for Submission

SYNTHESIS OF HYBRID ORGANIC – INORGANIC MATERIALS FOR POLLUTED GROUNDWATER TREATMENT SAN EL HAGER EAST DELTA EGYPT

A Thesis submitted

For the Partial Fulfillment of the Requirements

of the Master's Degree in Science

(Inorganic Chemistry)

by

FATMA MOHAMED EL-SAYED

(B.Sc. Chemistry& physics, 2007)

This thesis has been approved by supervisor committee: Prof.Dr. Mohamed Sabry Abdel-Mottaleb. Prof. of Inorganic & Photo-Chemistry- Fac. of Sci.- Ain Shams Univ. ASS.Prof.Dr. Mustafa Mohamed Said. Prof. of Water Chemistry - Desert Research Center. Dr. Mohamed El sayed Abdelfatah. Researcher of Water Chemistry - Desert Research Center. This thesis for M. Sc. Degree has been approved by: Prof. Dr. Mohamed Sabry Abdel-Mottaleb. Prof. of Inorganic & Photo-Chemistry- Fac. of Scie.-Ain Shams Univ. Prof. Dr. Mustafa Mohamed Said. Prof. of Water Chemistry- Desert Research Center. Prof. Dr. Ali Mustafa Ali Hassan. Prof. of Inorganic Chemistry- Dep. of Chemistry-Fac. of Sci.- Al-Azhar Univ. Prof. Dr. Gamal Owes El-Sayed Owes. Prof. of Analytical Chemistry- Dep. of Chemistry-Fac. of Sci.- Benha Univ. DATE OF EXAMINATION: / / 2018

Approval

Head of Chemistry Department

Prof. Dr. Ibrahim Hosani Badr

ACKNOWLEDGEMENT

The author wishes to express deepest thanks to Chemistry Department, Faculty of Science, Ain Shams University for giving a chance to do graduate research.

I would like to express special thanks to *Prof. Dr. Mohamed Sabry Abd ElMottalb*, Prof. of inorganic chemistry, Faculty of Science, Ain Shams Univ., for supervision, discussions and revising this work.

My great thanks to *Prof. Dr. Mustafa Mohamed Said*, Professor of Water Chemistry Department, Desert Research Center, for suggesting the point of research, direct supervision guidance, valuable comments, discussion and reading the manuscript.

I am greatly thankful for *Dr. Mohammed El sayed Abdelfattah*, doctor in Water Chemistry Department, Desert research center, who shared in planning and supervision, discussions, revising this work and interpretation have been done under his intimate guidance.

Deepest thanks for all the staff members & colleagues of Water & Soil Analysis Unit, Central Lab., Desert Research Center for cooperation, giving access to the laboratory and research facilities.

List of contents

Subject		Page	
	Contents	i	
	List of Tables	iv	
	List of Figures	vi	
	Abbreviations	ix	
	English Abstract		
	Chapter (1) Introduction		
1.1	General outline	1	
1.2	Problem statement	1	
1.3	Study area describtion	2	
1.3.1	Geomorphology	2	
1.3.2	Geomorphology	5	
1.3.2.1	Quaternary aquifer	5	
1.3.2.2.	Pleistocene deposits	7	
1.3.3	Hydrological conditions	8	
1.4	Water treatment	10	
	Chapter (2) Literature of review		
2.1	General outline	16	
2.2	Literature reviews of the study area	16	
2.2	Reviews of using photocatalytic	1.0	
2.3	Nanomateriales in water treatment	18	
	Chapter (3) Experimental		
3.1	General outline	28	
3.2	Collecting and field measurements of the	28	
3.2	water samples	20	
3.3	Laboratory studies	28	
3.4	Preparation of photo-catalysis nano materials		
3.4.1	Materials		
3.4.2	Methods		
	Chapter (4) Chemistry of groundwater		
4.1	General outline	35	
4.2	Chemical Parameters	35	
4.2.1	Groundwater salinity	36	
Subject		Page	

4.2.2	Groundwater chemical type			
4.2.3	Ions distribution			
4.2.3.1	Distribution of calcium and manganese			
4.2.3.2	Distribution of sodium plus potassium			
4.2.3.3	Distribution of carbonate and bicarbonate	42		
4.2.3.4	Distribution of sulphate	44		
4.2.3.5	Distribution of chloride	44		
4.2.4	Hydrochemical coefficients (ion ratios)	45		
4.2.4.1	rNa ⁺ /rCl	45		
4.2.4. 2	$r SOA^{2}/rC1$	46		
4.2.4.3	rCa^{2+}/rMg^{2+}	47		
4 2 4 4	Chloride-bicarbonate and carbonate ratio Cl	47		
4.2.4.4	$/(HCO_3^- + CO_3^{2-})$	47		
4.2.4.5	Base exchange index (rCl ⁻ -rNa ⁺)/rCl ⁻	48		
4.2.5	Hypothetical salts assemblages	48		
4.2.6	Water pollution sources. 5			
4.2.7	The hydrogeochemical processes			
4.2.7.1	Carbonate weathering			
4.2.7.2	Carbonate weathering 5 Ion exchange 5			
4.2.7.3	Oxidation/reduction processes			
4.2.8.	Geochemical classification of water	58		
4.2.8.1	Semi- logarithmic diagram	59		
4.2.8.2				
	4.2.8.2 Piper's tri-linear diagrams			
5.1	General outlines	63		
5.2	Evaluation of groundwater quality for human	63		
3.2	drinking	03		
5.3	Evaluation of groundwater quality for	65		
3.3	drinking of livestock and poultry	03		
5.4	Evaluation of groundwater for domestic and	67		
J. T	laundry uses	07		
5.5	laundry uses Evaluation of groundwater for irrigation			
5.5.1	Salinity level	68		
5.5.2	5.5.2 Effective salinity (ES)			
Subject		Page		
5.5.3	Boron contents (B ³⁺)	72		

5.5.4	Residual Sodium Carbonate (RSC)	
5.5.5	Sodium Adsorption Ratio (SAR)	
5.6	Evaluation of groundwater for industrial purposes.	
5.7	Effect of groundwater on archaeological sites	
Chapter 6		
	Photocatalytic degradation using	
	nanomaterials	
6.1	General outlines	80
6.2	Photocatalyst characterization	
6.3	Factors affecting on the degradation efficiency.	
6.3.1	Effect of CuO/TiO ₂ on the degradation of MB dye	87
6.3.2	dye Effect of initial dye concentrations	88
6.3.3	Effect of pH values on degradation	89
6.3.4	Effect of dose of mixed metal oxide	90
6.3.5	Effect of time on the degradation of MB dye	91
6.3.6	Effect of CuO/TiO ₂ nanomateriales on degradation of MB under sunlight	92
6.4	Photodegradation of natural organic matters	94
6.5	Conclusions	98
	Summary and recommendation	99
	References.	105
	Arabic summary	

List of Tables

No	Description	page
1(A)	The chemical analysis data of major cations and anions of the surface and groundwater samples in San El-Hager area, sea and rain water (A)	37
1(B)	The chemical analysis data of major cations and anions of the surface and groundwater samples in San El-Hager area, sea and rain water (B)	
2	Concentrations of heavy metals of water samples in San El- Hager area, sea and rain water	
3	Ion ratios (in me/l) for the groundwater samples and surface water, sea and rain water of the studied area	46
4	Hydro chemical formula and hypothetical salts assemblages for water samples in the study area	
5	BOD,COD and TOC evaluation of study area	
6	Water quality guidelines for human drinking	
7	Guide to the use of saline waters for livestock and poultry drinking	
8	Water quality evaluation for laundry usage according to its total hardness (Durfor and Becker, 1964)	
9	Crops and their salt tolerance (Richards, 1954)	69
10	Relative standards of effective irrigation water salinity according to Doneen, (1961)	

No	Description	page
11	Classification of irrigating water on the basis of Boron concentration (Leeden <i>et al.</i> 1990)	72
12	Classification of irrigation water on basis of residual sodium carbonate (RSC) values (Eaton, 1950)	75
13	Water quality evaluation for industrial use according to Twort <i>et al.</i> , (1985)	77
14	Photocatalytic degradation of polluted water samples in San El-Hager area	95

List of Figures

No	Description	Page
1	Location map of study area	
2	Geomorphologic map of the study area	5
3	Water table map of the study area	7
4	Schematic of semiconductor excitation by band gap	11
5	Major areas of activity in titanium dioxide photocatalysis	14
6	Major cations distributions for (a) surface water samples (b) Groundwater samples	41
7	Major anions distributions for (a) surface water samples (b) Groundwater samples	43
8	Hypothetical salts for (a) surface water samples (b) Groundwater samples	51
9	$Ca^{2+} + Mg^{2+} \text{ vs. } SO_4^{2-} + HCO_3 \text{ of ground water samples.}$	56
10	Ca ²⁺ vs. SO ₄ ²⁻ groundwater samples	56
11	Chloro Alkaline Indices (CAI 1 and 2) for groundwater samples	57
12	SO ₄ ²⁻ vs. Cl ⁻ for groundwater samples	59
13	Semi- logarithmic representation for ground water samples	60
14	Piper's classification for groundwater samples	62
15	EC values for (a) surface water samples, (b) groundwater samples.	70

No	Description	
16	RSC values for (a) surface water samples (b) groundwater samples	74
17	Classification of irrigation water of the study area	76
18	FTIR spectra of CuO, 1%CuO/TiO ₂ and TiO ₂ .	82
19	XRD patterns for the as-prepared TiO ₂ ,CuO, CuO/ TiO ₂	84
20	SEM for a) 0.5%CuO/TiO ₂ ,,b) 1%CuO/TiO ₂ ,c) 2% CuO/TiO ₂ , d) 3% CuO/TiO ₂ , E) 4%CuO/TiO ₂ , F) 8%CuO/TiO ₂ , G)TiO ₂ , H)CuO.	85
21	Particle size of (a)TiO ₂ , (b) CuO, (c) 1 % CuO/TiO ₂	86
22	Effect of time on the degradation of MB dye; CuO/TiO ₂ , TiO ₂ and CuO, CuO/TiO ₂ +M, pH= 7, catalyst content= 0.5 g/l, 10 ppm MB	88
23	Effect of initial dye concentration on the photodegradation efficiency; pH= 7, catalyst content= o.5 g/l, 1% CuO/TiO ₂	89
24	Effect of pH on the photodegradation efficiency, 1% CuO/TiO ₂ , Catalyst content = 0.5 g/ l, 5 ppm MB	90
25	Effect of different amount of nanoparticales on the photodegradation efficiency, 1% CuO/TiO ₂ , pH=9, 5 ppm MB	91
26	Effect of time on the degradation of MB dye under UV;1% CuO/TiO ₂ , catalyst content= 1g/l, pH=9, 5ppm MB	92

No	Description	Page
27	Effect of time on the degradation of MB dye under Sunlight; 1% CuO/TiO ₂ , catalyst content= 1g/l, pH=9, 5ppm MB	93
28	Mechanism of the photocatalytic activity of CuO-TiO ₂ nanoparticale	94
29	(a) Surface water under UV, (b) Surface water under sunlight	96
30	(a) Ground water under UV, (b) Ground water under sunlight	97

Abbreviations

Abbreviations	Meaning
BOD	biochemical Oxygen Demand
CuO	Copper Oxide
СВ	Conduction Band
COD	Chemical Oxygen Demand
CAI	Chloro-alkaline indices
DRC	Desert Research Center
DO	Dissolved Oxygen
EC	Electrical Conductivity.
ES	Effective salinity
Ebg	Energy band gap
ΔE_{g}	Energy interval
e ⁻	Electron
FTIR	Fourier Transform Infra Red
GPS	Global Positioning System
H_2	Hydrogen
h ⁺	Holes
hυ	Photon energy
ICP	Inductive Coupled Plasma.
MB	Methylene blue
meq/l	Milli Equivalent Per Liter.
NM	Nanomateriales
OH.	Hydroxyl radical
\mathbf{O}_2	Oxygen
ppm	Part Per Million

Abbreviations

Abbreviations

Abbreviations	Meaning
RSC	Residual Sodium Carbonate
SAR	Sodium Adsorption Ratio
SEM	Scanning Electron Microscopy
TDS	Total dissolved salts
TH	Total hardness
TiO ₂	Titanium dioxide
TOC	Total organic carbon
UV	Ultra violet
VB	Valence band
WHO	World Health Organization
XRD	X-ray diffraction

X

ABSTRACT

Fatma Mohamed Elsayed.Synthesis of hybrid organic – inorganic materials for polluted groundwater treatment San El- Hager – East Delta – EgyptUnpublished MS.C.thesis, Chemistry Department, Faculty of Science, Ain Shams University, 2018.

The present study deals with the hydrogeochemistry of San El-Hager which is a part of East Delta, Egypt. It is located between longitudes of 31° 49' to 31° 58' E and latitudes of 30° 50' to 31° 30' N. Throughout the area of consideration the main ground water aquifer is quaternary aquifer, which represented by 10 groundwater samples. Also, the surface water (10 samples) represented the canal and drain is second water resources in this area. The majority of water (groundwater, surface water) samples (50 %) are related to brackish, 40 % is saline to extremely saline and only 10 % is fresh water types. The chemical water type of all of samples is chloride – sodium, except one sample No (9) is sodium- sulfate. According to the total dissolved solid, all water samples (ground, surface water) are unsuitable for human drinking except one sample (No 20, canal) has 829.62 mg/L.According to chemical oxygen demand (COD), biochemical oxygen demand (BOD) and total organic carbon (TOC), all samples (ground and surface waters) have more than the acceptable level of pollution of COD, TOC. The area suffers from high polluted water and shortage of water resources. So, Nano- materiales titanium nanoparticle and copper oxide nanoparticle were prepared