

AIN SHAMS UNIVERSITY FACULTY OF ENGINEERING CAIRO - EGYPT

Electronics and Communications Engineering Department

Low Power Arithmetic Unit for 3D Graphics Applications

A thesis submitted in partial fulfilment of the requirements of the degree of

Doctor of Philosophy in Electrical Engineering

By

Dina Mohamed Mahmoud Ellaithy

Research Assistant at Microelectronics Department Electronics Research Institute, Giza, Egypt. Supervised By

Prof. Abdelhalim Abdelnaby Zekry

Ain Shams University, Cairo, Egypt.

Prof. Amal Zaki Mohamed

Electronics Research Institute, Giza, Egypt.

Assoc. Prof. Magdy Ali Elmoursy

Electronics Research Institute, Giza, Egypt.

Cairo 2018

AIN SHAMS UNIVERSITY FACULTY OF ENGINEERING CAIRO – EGYPT

Examiners Committee

Name: Dina Mohamed Mahmoud Ellaithy

Thesis: Low Power Arithmetic Unit for 3D Graphics Applications

Degree: Doctor of Philosophy in Electrical Engineering (Electronics and

Communications Engineering)

Title, Name, and Affiliation	Signature
1. Prof. Yehea Ismail Mohamed Kamel	
Faculty of Engineering - The American University in Cairo.	
2. Prof. Mohamed Amin Ebrahim Dessouky	
Faculty of Engineering - Ain Shams University.	
3. Prof. Abdelhalim Abdelnaby Zekry	
Faculty of Engineering - Ain Shams University	
4. Prof. Amal Zaki Mohamed	
Microelectronics Dept Electronics Research Institute	

Date: / / 2018

Statement of Original Authorship

This thesis is submitted as a partial fulfilment of Doctor of Philosophy

degree in Electrical Engineering, Faculty of Engineering, Ain shams

University.

The author carried out the work included in this thesis, and no part of it has

been submitted for a degree or a qualification at any other scientific entity.

Name: Dina Mohamed Mahmoud Ellaithy

Signature:

Date: / / 2018

Researcher Data

Name : Dina Mohamed Mahmoud Ellaithy.

Date of birth : 05 November 1983.

Place of birth : Cairo.

Last academic degree : Master of Science in Electrical

Engineering

Field of specialization : Electronics and Communications

Engineering.

University issued the degree: Ain Shams University.

Date of issued degree : May 2013.

Current job : Research Assistant, Electronics

Research Institute.

Acknowledgment

All my thanks to Allah for the successful completion of this work. I express my deepest gratitude and thanks to **Prof. Abdelhalim Zekry**, Ain Shams University, for his continuous supervision support. **Prof. Zekry** is behind all analytical, technical and even spiritual actions throughout this work.

Also, my deepest gratitude and thanks to **Prof. Magdy Elmoursy**, Mentor Graphics, for his outstanding support, patience, encouragement, and continuous guidance without which this thesis would have never been completed. He has been source of ideas and knowledge, yet, his wisdom allowed me to direct my research successfully. I would like to express my gratitude for his great availability and scientific support.

Special thanks to **Prof. Amal Zaki**, Electronics Research Institute, for her constant help and support along the way of my work.

Also, special thanks and appreciation to **Dr. Ghada Hamdy**, Electronics Research Institute, for her interest and valuable assistance.

I would also like to thank my examination committee members: **Prof. Yehea Ismail** and **Prof. Mohamed Dessouky,** thanks to you for serving as my committee members.

I also thank my colleagues at the Electronic Research Institute. Our discussions and meetings allowed me to improve my work. I wish them continued success in their careers.

Many thanks to my mother, father, and brothers for their great hearts which looked after me all these years and always encourages me for further progress.

Dina Mohamed Mahmoud Ellaithy

Abstract

Graphical processing units (GPUs) have wide variety of applications in different fields such as compute art, engineering, science, medicine, entertainment, advertising, visualization, military, and graphical user interface. The growth in the GPUs applications has led to evolution in the hardware design to handle the needed increase in performance. Also, the fast growth of the mobile electronics market and the transition from text based applications to versatile multimedia applications increasing the popularity of mobile communication devices. Real-time 3D graphics are becoming one of the greatest interesting applications in mobile workstations due to their benefits for gaming, advertising, marketing, and avatar. GPUs are mainly composed of several unified shaders. Each unified shader contains general purpose arithmetic unit and special function units (SFUs) that are used for computing special transcendental and algebraic functions not provided by the general function unit. Functions such as sine, cosine, reciprocal, logarithm, exponential, and compound functions are computed by SFUs. These functions use most of the clock cycles in the real time 3D graphics systems. As a result of that, they consume most of the computing power. Accordingly, reducing the power consumption of the arithmetic unit inside the programmable shaders is the main target for the optimization effort.

An energy efficient Double Logarithmic Arithmetic (DLA) technique is proposed for 3D graphics applications. DLA manipulates the logarithmic arithmetic and improves the architecture for the realization of the transcendental functions and the advanced lighting model using energy efficient techniques. The DLA features complete elimination of multipliers in logarithmic domain by using successive logarithmic converters. This work demonstrates up to 56% reduction in power consumption as compared to the existing techniques. The main advantage of this approach is the ability to perform the complex functions using power-efficient, area-efficient, as well as high frequency design. The proposed technique performs transcendental functions using the multiplier free hardware architecture. Moreover, based on non-uniform subdivisions and piecewise linear approximation, novel logarithmic and antilogarithmic converters are also proposed. These converters achieve optimal power consumption as compared to several recent approaches. They provide low relative error with less non-uniform subdivisions. Up to 19%, 12%, and 20% reduction in relative error, area, and power consumption, are achieved, respectively.

In addition, a dual channel multiplier (DCM) for energy efficient second order piecewise-polynomial function evaluation for 3D graphics applications is proposed. The performance of the evaluation process is highly dependent on the design of the multiplication and squaring structure.

A novel hardware implementation for polynomial evaluation is presented. The proposed approach compensates the complex multipliers by using DCM which reduces the hardware complexity. The DCM scheme performs complex functions with power-efficient and area-efficient approaches. The multiplier reduces the hardware computational effort in the piecewise polynomial approximation with uniform or non-uniform segmentation. For large operand input size, multiplier adder converter (MAC) and a dedicated radix4 squaring unit are also proposed. These units achieve the least power consumption as compared to previous approaches with large input word size. Comparison with general-purpose multiplication has shown reduction in power, and delay by up to 36%, and 50%, respectively. The proposed technique exhibits up to 93% saving in power consumption as compared to the current traditional schemes. This thesis presents novel designs of low power and low complexity arithmetic unit for GPU. The proposed arithmetic units suitable for low-power 3D graphics applications.

Keyword: antilogarithmic converter, double logarithmic arithmetic (DLA) unit, graphical processing unit (GPU), logarithmic arithmetic unit, logarithmic converter, low power.

Table of Contents

Chapter 1 Introduction	1
1.1 Graphical Processing Unit (GPU)	1
1.2 The architecture of the Graphical Processing Unit (GPU)	2
1.3 Main Challenge of the arithmetic unit of the GPU	5
1.4 Different algorithms of the arithmetic unit of the GPU	7
1.4.1 Logarithmic arithmetic technique	7
1.4.2 Direct look-up table algorithm	10
1.4.3 Polynomial and rational algorithm	10
1.4.4 Piecewise polynomial approximation algorithm	11
1.4.5 CORDIC algorithm	13
1.5 Organization of the Thesis	13
Chapter 2 Literature review	15
2.1 Introduction	15
2.2 Logarithmic Arithmetic Unit (LAU)	15
2.2.1 Logarithmic Arithmetic Unit Technique	16
2.2.2 Logarithmic and antilogarithmic converters	19
2.3 Piecewise Polynomial function evaluation (PWP)	23
2.4 Summary	27
Chapter 3 Double logarithmic Arithmetic Unit	28
3.1 Introduction	28
3.2 Proposed DLA Approach	29

3.2.1 DLA Architecture	30
3.2.2 Transcendental Functions	33
3.2.3 Lighting Model Equations	34
3.3 Logarithmic and Antilogarithmic Converters	36
3.3.1 Proposed Logarithmic Converter	39
3.3.2 Proposed Antilogarithmic Converter	41
3.4 Error analysis and comparisons	43
3.5 Hardware implementation and Synthesis Results	50
3.6 Conclusion	58
Chapter 4 Dual Channel Multiplier for Piecewise-Polynomial	Function
Evaluation for Low-Power 3D Graphics	60
4.1 Introduction	60
4.2 Proposed dual-channel-multiplier (DCM) scheme	61
4.2.1 DCM Architecture	62
4.2.2 DCM with Quadratic Piece-wise Polynomial Evaluation	
4.3 Proposed multiplier-adder-converter (MAC) Quadratic Polynomial Function Evaluation	
4.3.1 Proposed MAC	68
4.3.2 Quadratic Piecewise Polynomial Function Evaluat MAC	
4.4 Hardware implementation and performance evaluation	70
4.4.1 Different Multipliers Implementation	71

4.4.2 C	Quadratic PW	P with DO	CM Implement	ation		74
4.4.3	Proposed	MAC	Associated	with	Quadratic	PWP
Imp	plementation					76
4.5 Conc	lusion					79
Chapter	5 Conclusio	ns and Fu	ıture Work	•••••	•••••	81
5.1 Conc	lusions					81
5.2 Futur	e Work					84
5.3 List o	of Contribution	ons				85
Reference	es		••••			87

List of Figures

Figure 1.1	Different GPU applications	. 2
Figure 1.2	The basic blocks of the vertex shader	. 3
Figure 1.3	The 3D graphics rendering of graphical processing unit	
(GPU)		.4
Figure 1.4	Different advanced graphics influences	. 6
Figure 1.5	Architecture of the logarithmic arithmetic unit	.9
Figure 1.6	Hardware architecture of the conventional quadratic	
piecewise-p	olynomial function evaluation	13
Figure 2.1	The original architecture of the logarithmic arithmetic unit	
(LAU)	1	17
Figure 2.2	The basic architecture of linear piecewise approximation	19
Figure 2.3	The basic architecture of linear piecewise approximation2	24
Figure 3.1	Architecture of the vertex shader with DLA	31
Figure 3.2	Fixed-point format Qm.n of the x number	31
Figure 3.3	Architecture of the DLA for exponentiation operation	32
Figure 3.4	Structural of the DLA	38
Figure 3.5	Proposed algorithm for logarithmic/antilogarithmic	
converters	3	38
Figure 3.6	Error of logarithmic converters with proposed 9-region and	
proposed 11	-region	45
Figure 3.7	Error of logarithmic converters with proposed 6-region	46
Figure 3.8	Error of antilogarithmic converters with proposed 8-region4	l 6
Figure 3.9	Error of antilogarithmic converters with proposed 4-region	47
Figure 3.10	Error of antilogarithmic converters with proposed 2-	
region	4	17

Figure 3.11	(a) Architecture of the proposed logarithmic converters. (b))
Architecture	of the proposed antilogarithmic converters.	.48
Figure 3.12	The structural of the DLA for logarithmic to base b	. 54
Figure 4.1	Core structure of the Dual Channel Multiplier-Graphical	
Processing U	Jnit (DCM-GPU)	.62
Figure 4.2	The block diagram of the proposed 8-bits Dual Channel	
Multiplier (I	OCM)	.64
Figure 4.3	The partial product of multiplying two 8-bits	.65
Figure 4.4	The architecture of the DCM for the quadratic piecewise-	
polynomial f	function evaluation	.66
Figure 4.5	The proposed multiplier-adder-converter (MAC) scheme	.68
Figure 4.6	Quadratic PWP block diagram with the proposed MAC	.70

List of Tables

Table 1.1 Operations in logarithmic number system
Table 3.1 Comparison between the DLA and LNS for the target
operations
Table 3.2 The proposed 11 non-uniform regions logarithmic converter
with its conversion coefficient
Table 3.3 The proposed 9 non-uniform regions logarithmic converter with
its conversion coefficient
Table 3.4 The proposed 6 non-uniform regions logarithmic converter with
its conversion coefficient41
Table 3.5 The proposed 8 non-uniform regions antilogarithmic converter
with its conversion coefficient. 42
Table 3.6 The proposed 4 non-uniform regions antilogarithmic converter
with its conversion coefficient. 42
Table 3.7 The proposed 2 non-uniform regions antilogarithmic converter
with its conversion coefficient
Table 3.8 Error comparison between the proposed 11-region and 9-region
logarithmic converters and previous work
Table 3.9 Error comparison between the proposed 6-region logarithmic
converters and previous work
Table 3.10 Error comparison between the proposed 8-region
antilogarithmic converters and previous work
Table 3.11 Error comparison between the proposed 4-region
antilogarithmic converters and previous work
Table 3.12 Error comparison between the proposed 2-region
antilogarithmic converters and previous work

Table 3.13 Comparison between the proposed 11-region and 9-region
logarithmic converters and previous work in terms of power, area, and
delay
Table 3.14 Comparison between the proposed 6-regionlogarithmic
converters and previous work in terms of power, area, and delay55
Table 3.15 Comparison between the proposed 8-region antilogarithmic
converters and previous work in terms of power, area, and delay55
Table 3.16 Comparison between the proposed 4-region antilogarithmic
converters and previous work in terms of power, area, and delay56
Table 3.17 Comparison between the proposed 2-region antilogarithmic
converters and previous work in terms of power, area, and delay56
Table 3.18 Comparison of the DLA and previous work for exponentiation
operation in terms of power, area, delay, and average error at $100\ \mathrm{MHz}$. 57
Table 3.19 Comparison of the DLA and previous work for logarithmic to
base b operation in terms of power, area, delay, and average error at 16
MHz
Table 4.1 8-bits multiplier, 90 nm CMOS implementation at 200 MHz $\mathinner{\ldotp\ldotp} 72$
Table 4.2 16-bits multiplier, 90 nm CMOS implementation at 200 MHz 73
Table 4.3 Quadratic piecewise polynomial function evaluation for the
1/(1+x) function at 200 MHz
Table 4.4 Quadratic piecewise polynomial function evaluation for the $1/x$
function at at 200 MHz
Table 4.5 32-bits MAC multiplier comparison at 100 MHz78
Table 4.6 32-bits squarer comparison at 100 MHz
Table 4.7 32-bits quadratic piecewise polynomial function evaluation for
the 1/(1+x) at 100 MHz